Modulation of lysyl oxidase activity toward peptidyl lysine by vicinal dicarboxylic amino acid residues

Author(s):  
N. Nagan ◽  
H. M. Kagan
2003 ◽  
Vol 50 (2) ◽  
pp. 567-572 ◽  
Author(s):  
Paulina Nawłoka ◽  
Małgorzata Kalinowska ◽  
Cezary Paczkowski ◽  
Zdzisław A Wojciechowski

Effects of several chemical probes selectively modifying various amino-acid residues on the activity of UDP-glucose : solasodine glucosyltransferase from eggplant leaves was studied. It was shown that diethylpyrocarbonate (DEPC), a specific modifier of histidine residues, was strongly inhibitory. However, in the presence of excessive amounts of the enzyme substrates, i.e. either UDP-glucose or solasodine, the inhibitory effect of DEPC was much weaker indicating that histidine (or histidines) are present in the active site of the enzyme. Our results suggest also that unmodified residues of glutamic (or aspartic) acid, lysine, cysteine, tyrosine and tryptophan are necessary for full activity of the enzyme. Reagents modifying serine and arginine residues have no effect on the enzyme activity.


1987 ◽  
Vol 57 (01) ◽  
pp. 017-019 ◽  
Author(s):  
Magda M W Ulrich ◽  
Berry A M Soute ◽  
L Johan M van Haarlem ◽  
Cees Vermeer

SummaryDecarboxylated osteocalcins were prepared and purified from bovine, chicken, human and monkey bones and assayed for their ability to serve as a substrate for vitamin K-dependent carboxylase from bovine liver. Substantial differences were observed, especially between bovine and monkey d-osteocalcin. Since these substrates differ only in their amino acid residues 3 and 4, it seems that these residues play a role in the recognition of a substrate by hepatic carboxylase.


1982 ◽  
Vol 48 (03) ◽  
pp. 277-282 ◽  
Author(s):  
I Nathan ◽  
A Dvilansky ◽  
T Yirmiyahu ◽  
M Aharon ◽  
A Livne

SummaryEchis colorata bites cause impairment of platelet aggregation and hemostatic disorders. The mechanism by which the snake venom inhibits platelet aggregation was studied. Upon fractionation, aggregation impairment activity and L-amino acid oxidase activity were similarly separated from the crude venom, unlike other venom enzymes. Preparations of L-amino acid oxidase from E.colorata and from Crotalus adamanteus replaced effectively the crude E.colorata venom in impairment of platelet aggregation. Furthermore, different treatments known to inhibit L-amino acid oxidase reduced in parallel the oxidase activity and the impairment potency of both the venom and the enzyme preparation. H2O2 mimicked characteristically the impairment effects of L-amino acid oxidase and the venom. Catalase completely abolished the impairment effects of the enzyme and the venom. It is concluded that hydrogen peroxide formed by the venom L-amino acid oxidase plays a role in affecting platelet aggregation and thus could contribute to the extended bleeding typical to persons bitten by E.colorata.


2018 ◽  
Author(s):  
Allan J. R. Ferrari ◽  
Fabio C. Gozzo ◽  
Leandro Martinez

<div><p>Chemical cross-linking/Mass Spectrometry (XLMS) is an experimental method to obtain distance constraints between amino acid residues, which can be applied to structural modeling of tertiary and quaternary biomolecular structures. These constraints provide, in principle, only upper limits to the distance between amino acid residues along the surface of the biomolecule. In practice, attempts to use of XLMS constraints for tertiary protein structure determination have not been widely successful. This indicates the need of specifically designed strategies for the representation of these constraints within modeling algorithms. Here, a force-field designed to represent XLMS-derived constraints is proposed. The potential energy functions are obtained by computing, in the database of known protein structures, the probability of satisfaction of a topological cross-linking distance as a function of the Euclidean distance between amino acid residues. The force-field can be easily incorporated into current modeling methods and software. In this work, the force-field was implemented within the Rosetta ab initio relax protocol. We show a significant improvement in the quality of the models obtained relative to current strategies for constraint representation. This force-field contributes to the long-desired goal of obtaining the tertiary structures of proteins using XLMS data. Force-field parameters and usage instructions are freely available at http://m3g.iqm.unicamp.br/topolink/xlff <br></p></div><p></p><p></p>


Sign in / Sign up

Export Citation Format

Share Document