Fibonacci Numbers and Continued Fractions

2002 ◽  
pp. 89-123
Author(s):  
Nicolai N. Vorobiew
2017 ◽  
Vol 13 (2) ◽  
pp. 7147-7154
Author(s):  
Anthony G Shannon ◽  
Charles K Cook b ◽  
Rebecca A. Hillman c

The essential idea in this paper it to generalize and synthesize some of the pioneering ideas of Bernstein, Lucas and Horadam on generalizations of basic and primordial Fibonacci numbers and their arbitrary order generalizations and their relation to generalized continued fractions with matrices as the unifying elements.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Daniel Fishman ◽  
Steven J. Miller

We derive closed form expressions for the continued fractions of powers of certain quadratic surds. Specifically, consider the recurrence relation with , , a positive integer, and (note that gives the Fibonacci numbers). Let . We find simple closed form continued fraction expansions for for any integer by exploiting elementary properties of the recurrence relation and continued fractions.


2020 ◽  
Vol 70 (5) ◽  
pp. 1057-1068
Author(s):  
Jhon J. Bravo ◽  
Jose L. Herrera

AbstractIn this paper, by using lower bounds for linear forms in logarithms of algebraic numbers and the theory of continued fractions, we find all Fibonacci numbers that appear in generalized Pell sequences. Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for Fibonacci numbers in the Pell sequence.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 682
Author(s):  
Petr Coufal ◽  
Pavel Trojovský

For any integer k≥2, the sequence of the k-generalized Fibonacci numbers (or k-bonacci numbers) is defined by the k initial values F−(k−2)(k)=⋯=F0(k)=0 and F1(k)=1 and such that each term afterwards is the sum of the k preceding ones. In this paper, we search for repdigits (i.e., a number whose decimal expansion is of the form aa…a, with a∈[1,9]) in the sequence (Fn(k)Fn(k+m))n, for m∈[1,9]. This result generalizes a recent work of Bednařík and Trojovská (the case in which (k,m)=(2,1)). Our main tools are the transcendental method (for Diophantine equations) together with the theory of continued fractions (reduction method).


2014 ◽  
Vol 64 (2) ◽  
Author(s):  
Hacène Belbachir ◽  
Takao Komatsu ◽  
László Szalay

AbstractOur main purpose is to describe the recurrence relation associated to the sum of diagonal elements laying along a finite ray crossing Pascal’s triangle. We precise the generating function of the sequence of described sums. We also answer a question of Horadam posed in his paper [Chebyshev and Pell connections, Fibonacci Quart. 43 (2005), 108–121]. Further, using Morgan-Voyce sequence, we establish the nice identity $F_{n + 1} - iF_n = i^n \sum\limits_{k = 0}^n {(_{2k}^{n + k} )( - 2 - i)^k } $ of Fibonacci numbers, where i is the imaginary unit. Finally, connections to continued fractions, bivariate polynomials and finite differences are given.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 255
Author(s):  
Dan Lascu ◽  
Gabriela Ileana Sebe

We investigate the efficiency of several types of continued fraction expansions of a number in the unit interval using a generalization of Lochs theorem from 1964. Thus, we aim to compare the efficiency by describing the rate at which the digits of one number-theoretic expansion determine those of another. We study Chan’s continued fractions, θ-expansions, N-continued fractions, and Rényi-type continued fractions. A central role in fulfilling our goal is played by the entropy of the absolutely continuous invariant probability measures of the associated dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document