Nonlinear Ray Perturbation Theory with its Applications to Ray Tracing and Inversion in Anisotropic Media

Author(s):  
A. B. Druzhinin
2021 ◽  
Vol 40 (4) ◽  
pp. 267-276
Author(s):  
Peter Mesdag ◽  
Leonardo Quevedo ◽  
Cătălin Tănase

Exploration and development of unconventional reservoirs, where fractures and in-situ stresses play a key role, call for improved characterization workflows. Here, we expand on a previously proposed method that makes use of standard isotropic modeling and inversion techniques in anisotropic media. Based on approximations for PP-wave reflection coefficients in orthorhombic media, we build a set of transforms that map the isotropic elastic parameters used in prestack inversion into effective anisotropic elastic parameters. When used in isotropic forward modeling and inversion, these effective parameters accurately mimic the anisotropic reflectivity behavior of the seismic data, thus closing the loop between well-log data and seismic inversion results in the anisotropic case. We show that modeling and inversion of orthorhombic anisotropic media can be achieved by superimposing effective elastic parameters describing the behavior of a horizontally stratified medium and a set of parallel vertical fractures. The process of sequential forward modeling and postinversion analysis is exemplified using synthetic data.


1991 ◽  
Author(s):  
J. Costa ◽  
M. Schoenberg ◽  
D. Miller

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. T281-T289 ◽  
Author(s):  
Qianru Xu ◽  
Weijian Mao

We have developed a fast ray-tracing method for multiple layered inhomogeneous anisotropic media, based on the generalized Snell’s law. Realistic geologic structures continuously varying with embedded discontinuities are parameterized by adopting cubic B-splines with nonuniformly spaced nodes. Because the anisotropic characteristic is often closely related to the interface configuration, this model parameterization scheme containing the natural inclination of the corresponding layer is particularly suitable for tilted transverse isotropic models whose symmetry axis is generally perpendicular to the direction of the layers. With this model parameterization, the first- and second-order spatial derivatives of the velocity within the interfaces can be effectively obtained, which facilitates the amplitude computation in dynamic ray tracing. By using complex initial conditions for the dynamic ray system and taking the multipath effect into consideration, our method is applicable to Gaussian beam migration. Numerical experiments of our method have been used to verify its effectiveness, practicability, and efficiency in memory storage and computation.


Geophysics ◽  
1996 ◽  
Vol 61 (4) ◽  
pp. 947-963 ◽  
Author(s):  
Tariq Alkhalifah

Nearly all dip‐moveout correction (DMO) implementations to date assume isotropic homogeneous media. Usually, this has been acceptable considering the tremendous cost savings of homogeneous isotropic DMO and considering the difficulty of obtaining the anisotropy parameters required for effective implementation. In the presence of typical anisotropy, however, ignoring the anisotropy can yield inadequate results. Since anisotropy may introduce large deviations from hyperbolic moveout, accurate transformation to zero‐offset in anisotropic media should address such nonhyperbolic moveout behavior of reflections. Artley and Hale’s v(z) ray‐tracing‐based DMO, developed for isotropic media, provides an attractive approach to treating such problems. By using a ray‐tracing procedure crafted for anisotropic media, I modify some aspects of their DMO so that it can work for v(z) anisotropic media. DMO impulse responses in typical transversely isotropic (TI) models (such as those associated with shales) deviate substantially from the familiar elliptical shape associated with responses in homogeneous isotropic media (to the extent that triplications arise even where the medium is homogeneous). Such deviations can exceed those caused by vertical inhomogeneity, thus emphasizing the importance of taking anisotropy into account in DMO processing. For isotropic or elliptically anisotropic media, the impulse response is an ellipse; but as the key anisotropy parameter η varies, the shape of the response differs substantially from elliptical. For typical η > 0, the impulse response in TI media tends to broaden compared to the response in an isotropic homogeneous medium, a behavior opposite to that encountered in typical v(z) isotropic media, where the response tends to be squeezed. Furthermore, the amplitude distribution along the DMO operator differs significantly from that for isotropic media. Application of this anisotropic DMO to data from offshore Africa resulted in a considerably better alignment of reflections from horizontal and dipping reflectors in common‐midpoint gather than that obtained using an isotropic DMO. Even the presence of vertical inhomogeneity in this medium could not eliminate the importance of considering the shale‐induced anisotropy.


Geophysics ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. T45-T59
Author(s):  
Harpreet Sethi ◽  
Jeffrey Shragge ◽  
Ilya Tsvankin

Accurately modeling full-wavefield solutions at and near the seafloor is challenging for conventional single-domain elastic finite-difference (FD) methods. Because they treat the fluid layer as a solid with zero shear-wave velocity, the energy partitioning for body and surface waves at the seafloor is distorted. This results in incorrect fluid/solid boundary conditions, which has significant implications for imaging and inversion applications that use amplitude information for model building. To address these issues, here we use mimetic FD (MFD) operators to develop and test a numerical approach for accurately implementing the boundary conditions at a fluid/solid interface. Instead of employing a single “global” model domain, we partition the full grid into two subdomains that represent the acoustic and elastic (possibly anisotropic) media. A novel split-node approach based on one-sided MFD operators is introduced to distribute grid points at the fluid/solid interface and satisfy the wave equation and the boundary conditions. Numerical examples demonstrate that such MFD operators achieve stable implementation of the boundary conditions with the same (fourth) order of spatial accuracy as that inside the split-domain interiors. We compare the wavefields produced by the MFD scheme with those from a more computationally expensive spectral-element method to validate our algorithm. The modeling results help analyze the events associated with the fluid/solid (seafloor) interface and provide valuable insights into the horizontal displacement or velocity components (e.g., recorded in ocean-bottom-node data sets). The developed MFD approach can be efficiently used in elastic anisotropic imaging and inversion applications involving ocean-bottom seismic data.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. T331-T342
Author(s):  
Xing-Wang Li ◽  
Bing Zhou ◽  
Chao-Ying Bai ◽  
Jian-Lu Wu

In a viscoelastic anisotropic medium, velocity anisotropy and wave energy attenuation occur and are often observed in seismic data applications. Numerical investigation of seismic wave propagation in complex viscoelastic anisotropic media is very helpful in understanding seismic data and reconstructing subsurface structures. Seismic ray tracing is an effective means to study the propagation characteristics of high-frequency seismic waves. Unfortunately, most seismic ray-tracing methods and traveltime tomographic inversion algorithms only deal with elastic media and ignore the effect of viscoelasticity on the seismic raypath. We have developed a method to find the complex ray velocity that gives the seismic ray speed and attenuation in an arbitrary viscoelastic anisotropic medium, and we incorporate them with the modified shortest-path method to determine the raypath and calculate the real and imaginary traveltime (wave energy attenuation) simultaneously. We determine that the complex ray-tracing method is applicable to arbitrary 2D/3D viscoelastic anisotropic media in a complex geologic model and the computational errors of the real and imaginary traveltime are less than 0.36% and 0.59%, respectively. The numerical examples verify that the new method is an effective and powerful tool for accomplishing seismic complex ray tracing in heterogeneous viscoelastic anisotropic media.


Sign in / Sign up

Export Citation Format

Share Document