scholarly journals Transformation to zero offset in transversely isotropic media

Geophysics ◽  
1996 ◽  
Vol 61 (4) ◽  
pp. 947-963 ◽  
Author(s):  
Tariq Alkhalifah

Nearly all dip‐moveout correction (DMO) implementations to date assume isotropic homogeneous media. Usually, this has been acceptable considering the tremendous cost savings of homogeneous isotropic DMO and considering the difficulty of obtaining the anisotropy parameters required for effective implementation. In the presence of typical anisotropy, however, ignoring the anisotropy can yield inadequate results. Since anisotropy may introduce large deviations from hyperbolic moveout, accurate transformation to zero‐offset in anisotropic media should address such nonhyperbolic moveout behavior of reflections. Artley and Hale’s v(z) ray‐tracing‐based DMO, developed for isotropic media, provides an attractive approach to treating such problems. By using a ray‐tracing procedure crafted for anisotropic media, I modify some aspects of their DMO so that it can work for v(z) anisotropic media. DMO impulse responses in typical transversely isotropic (TI) models (such as those associated with shales) deviate substantially from the familiar elliptical shape associated with responses in homogeneous isotropic media (to the extent that triplications arise even where the medium is homogeneous). Such deviations can exceed those caused by vertical inhomogeneity, thus emphasizing the importance of taking anisotropy into account in DMO processing. For isotropic or elliptically anisotropic media, the impulse response is an ellipse; but as the key anisotropy parameter η varies, the shape of the response differs substantially from elliptical. For typical η > 0, the impulse response in TI media tends to broaden compared to the response in an isotropic homogeneous medium, a behavior opposite to that encountered in typical v(z) isotropic media, where the response tends to be squeezed. Furthermore, the amplitude distribution along the DMO operator differs significantly from that for isotropic media. Application of this anisotropic DMO to data from offshore Africa resulted in a considerably better alignment of reflections from horizontal and dipping reflectors in common‐midpoint gather than that obtained using an isotropic DMO. Even the presence of vertical inhomogeneity in this medium could not eliminate the importance of considering the shale‐induced anisotropy.

Geophysics ◽  
1995 ◽  
Vol 60 (5) ◽  
pp. 1474-1484 ◽  
Author(s):  
Tariq Alkhalifah

Gaussian beam migration (GBM), as it is implemented today, efficiently handles isotropic inhomogeneous media. The approach is based on the solution of the wave equation in ray‐centered coordinates. Here, I extend the method to work for 2-D migration in generally anisotropic inhomogeneous media. Extension of the Gaussian‐beam method from isotropic to anisotropic media involves modification of the kinematics and dynamics in the required ray tracing. While the accuracy of the paraxial expansion for anisotropic media is comparable to that for isotropic media, ray tracing in anisotropic media is much slower than that in isotropic media. However, because ray tracing is just a small portion of the computation in GBM, the increased computational effort in general anisotropic GBM is typically only about 40%. Application of this method to synthetic examples shows successful migration in inhomogeneous, transversely isotropic media for reflector dips up to and beyond 90°. Further applications to synthetic data of layered anisotropic media show the importance of applying the proper smoothing to the velocity field used in the migration. Also, tests with synthetic data show that the quality of anisotropic migration of steep events in a medium with velocity increasing with depth is much more sensitive to the Thomsen anisotropy parameter ε than to the parameter δ. Thus, a good estimate of ε is needed to apply anisotropic migration with confidence.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. C153-C160 ◽  
Author(s):  
Lijiao Zhang ◽  
Bing Zhou

Kinematic ray tracing is an effective way to simulate the seismic wave propagation in isotropic and anisotropic media. It is essential to know the ray velocity when tracing seismic rays. But in anisotropic media, the ray velocity is a function of the direction of the slowness vector instead of the ray direction and it often deviates from the phase velocity. In this case, it causes a critical problem for ray tracing, which is how to calculate the ray velocity from a known ray direction. If we could calculate the phase slowness vector from ray directions, the ray velocity could be computed. We have evaluated a previous method in the first place. Then, we developed two new methods to solve two existing problems of the previous method: (1) It leads to complex and multiple solutions of the slowness vector and (2) it mixes up the qP- and qSV-wave modes. Our first method solves the two problems by applying eigenvalues to separate the wave modes and decrease the two unknowns ([Formula: see text] and [Formula: see text]) to only one unknown in two equations. Our second method is based on the general relationship between the slowness and ray-velocity vectors and shows that only one unknown is involved in one equation for tilted transversely isotropic (TTI) media. After obtaining the slowness vector, the ray velocity can be computed easily. A 2D model is designed to test the feasibility of the new methods. Using the results for the model, we found that the presented approaches were applicable for ray tracing in TTI media.


Geophysics ◽  
1990 ◽  
Vol 55 (11) ◽  
pp. 1429-1434 ◽  
Author(s):  
N. F. Uren ◽  
G. H. F. Gardner ◽  
J. A. McDonald

The migrator’s equation, which gives the relationship between real and apparent dips on a reflector in zero‐offset reflection seismic sections, may be readily implemented in one step with a frequency‐domain migration algorithm for homogeneous media. Huygens’ principle is used to derive a similar relationship for anisotropic media where velocities are directionally dependent. The anisotropic form of the migrator’s equation is applicable to both elliptically and nonelliptically anisotropic media. Transversely isotropic media are used to demonstrate the performance of an f-k implementation of the migrator’s equation for anisotropic media. In such a medium SH-waves are elliptically anisotropic, while P-waves are nonelliptically anisotropic. Numerical model data and physical model data demonstrate the performance of the algorithm, in each case recovering the original structure. Isotropic and anisotropic migration of anisotropic physical model data are compared experimentally, where the anisotropic velocity function of the medium has a vertical axis of symmetry. Only when anisotropic migration is used is the original structure recovered.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


Geophysics ◽  
2009 ◽  
Vol 74 (1) ◽  
pp. D25-D36 ◽  
Author(s):  
Rodrigo Felício Fuck ◽  
Andrey Bakulin ◽  
Ilya Tsvankin

Time-lapse traveltime shifts of reflection events recorded above hydrocarbon reservoirs can be used to monitor production-related compaction and pore-pressure changes. Existing methodology, however, is limited to zero-offset rays and cannot be applied to traveltime shifts measured on prestack seismic data. We give an analytic 3D description of stress-related traveltime shifts for rays propagating along arbitrary trajectories in heterogeneous anisotropic media. The nonlinear theory of elasticity helps to express the velocity changes in and around the reservoir through the excess stresses associated with reservoir compaction. Because this stress-induced velocity field is both heterogeneous and anisotropic, it should be studied using prestack traveltimes or amplitudes. Then we obtain the traveltime shifts by first-order perturbation of traveltimes that accounts not only for the velocity changes but also for 3D deformation of reflectors. The resulting closed-form expression can be used efficiently for numerical modeling of traveltime shifts and, ultimately, for reconstructing the stress distribution around compacting reservoirs. The analytic results are applied to a 2D model of a compacting rectangular reservoir embedded in an initially homogeneous and isotropic medium. The computed velocity changes around the reservoir are caused primarily by deviatoric stresses and produce a transversely isotropic medium with a variable orientation of the symmetry axis and substantial values of the Thomsen parameters [Formula: see text] and [Formula: see text]. The offset dependence of the traveltime shifts should play a crucial role in estimating the anisotropy parameters and compaction-related deviatoric stress components.


Geophysics ◽  
2006 ◽  
Vol 71 (1) ◽  
pp. S29-S35 ◽  
Author(s):  
Tariq Alkhalifah

Using a newly developed nonhyperbolic offset-mid-point traveltime equation for prestack Kirchhoff time migration, instead of the conventional double-square-root (DSR) equation, results in overall better images from anisotropic data. Specifically, prestack Kirchhoff time migration for transversely isotropic media with a vertical symmetry axis (VTI media) is implemented using an analytical offset-midpoint traveltime equation that represents the equivalent of Cheop's pyramid for VTI media. It includes higher-order terms necessary to better handle anisotropy as well as vertical inhomogeneity. Application of this enhanced Kirchhoff time-migration method to the anisotropic Marmousi data set demonstrates the effectiveness of the approach. Further application of the method to field data from Trinidad results in sharper reflectivity images of the subsurface, with the faults better focused and positioned than with images obtained using isotropic methods. The superiority of the anisotropic time migration is evident in the flatness of the image gathers.


Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 591-596 ◽  
Author(s):  
Suhas Phadke ◽  
S. Kapotas ◽  
N. Dai ◽  
Ernest R. Kanasewich

Wave propagation in transversely isotropic media is governed by the horizontal and vertical wave velocities. The quasi‐P(qP) wavefront is not an ellipse; therefore, the propagation cannot be described by the wave equation appropriate for elliptically anisotropic media. However, for a limited range of angles from the vertical, the dispersion relation for qP‐waves can be approximated by an ellipse. The horizontal velocity necessary for this approximation is different from the true horizontal velocity and depends upon the physical properties of the media. In the method described here, seismic data is migrated using a 45-degree wave equation for elliptically anisotropic media with the horizontal velocity determined by comparing the 45-degree elliptical dispersion relation and the quasi‐P‐dispersion relation. The method is demonstrated for some synthetic data sets.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. S133-S138 ◽  
Author(s):  
Tianfei Zhu ◽  
Samuel H. Gray ◽  
Daoliu Wang

Gaussian-beam depth migration is a useful alternative to Kirchhoff and wave-equation migrations. It overcomes the limitations of Kirchhoff migration in imaging multipathing arrivals, while retaining its efficiency and its capability of imaging steep dips with turning waves. Extension of this migration method to anisotropic media has, however, been hampered by the difficulties in traditional kinematic and dynamic ray-tracing systems in inhomogeneous, anisotropic media. Formulated in terms of elastic parameters, the traditional anisotropic ray-tracing systems aredifficult to implement and inefficient for computation, especially for the dynamic ray-tracing system. They may also result inambiguity in specifying elastic parameters for a given medium.To overcome these difficulties, we have reformulated the ray-tracing systems in terms of phase velocity.These reformulated systems are simple and especially useful for general transversely isotropic and weak orthorhombic media, because the phase velocities for these two types of media can be computed with simple analytic expressions. These two types of media also represent the majority of anisotropy observed in sedimentary rocks. Based on these newly developed ray-tracing systems, we have extended prestack Gaussian-beam depth migration to general transversely isotropic media. Test results with synthetic data show that our anisotropic, prestack Gaussian-beam migration is accurate and efficient. It produces images superior to those generated by anisotropic, prestack Kirchhoff migration.


Geophysics ◽  
1996 ◽  
Vol 61 (6) ◽  
pp. 1883-1894 ◽  
Author(s):  
Vladimir Y. Grechka ◽  
George A. McMechan

A two‐point ray‐tracing technique for 3-D smoothly heterogeneous, weakly transversely isotropic media is based on Fermat’s principle and takes advantage of global Chebyshev approximation of both the model and curved rays. This approximation gives explicit relations for derivatives of traveltime with respect to ray parameters and allows use of the rapidly converging conjugate gradient method to compute traveltimes. The method is fast because, for most smoothly heterogeneous media, approximation of rays by only a few polynomials and a few conjugate gradient iterations provide excellent precision in traveltime calculation.


Sign in / Sign up

Export Citation Format

Share Document