Thermal Comfort Analysis of Novel Low Exergy Radiant Heating Cooling System and Energy Saving Potential Comparing to Conventional Systems

Author(s):  
Aliihsan Koca ◽  
Zafer Gemici ◽  
Koray Bedir ◽  
Erhan Böke ◽  
Barış Burak Kanbur ◽  
...  
Author(s):  
Lingjiang Huang ◽  
Jian Kang

AbstractThe solar incidence on an indoor environment and its occupants has significant impacts on indoor thermal comfort. It can bring favorable passive solar heating and can result in undesired overheating (even in winter). This problem becomes more critical for high altitudes with high intensity of solar irradiance, while received limited attention. In this study, we explored the specific overheating and rising thermal discomfort in winter in Lhasa as a typical location of a cold climate at high altitudes. First, we evaluated the thermal comfort incorporating solar radiation effect in winter by field measurements. Subsequently, we investigated local occupant adaptive responses (considering the impact of direct solar irradiance). This was followed by a simulation study of assessment of annual based thermal comfort and the effect on energy-saving potential by current solar adjustment. Finally, we discussed winter shading design for high altitudes for both solar shading and passive solar use at high altitudes, and evaluated thermal mass shading with solar louvers in terms of indoor environment control. The results reveal that considerable indoor overheating occurs during the whole winter season instead of summer in Lhasa, with over two-thirds of daytime beyond the comfort range. Further, various adaptive behaviors are adopted by occupants in response to overheating due to the solar radiation. Moreover, it is found that the energy-saving potential might be overestimated by 1.9 times with current window to wall ratio requirements in local design standards and building codes due to the thermal adaption by drawing curtains. The developed thermal mass shading is efficient in achieving an improved indoor thermal environment by reducing overheating time to an average of 62.2% during the winter and a corresponding increase of comfort time.


Energies ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1732 ◽  
Author(s):  
Yin Bi ◽  
Yugang Wang ◽  
Xiaoli Ma ◽  
Xudong Zhao

2019 ◽  
Vol 202 ◽  
pp. 109390 ◽  
Author(s):  
Shenglan Jing ◽  
Yonggang Lei ◽  
Hongjian Wang ◽  
Chongfang Song ◽  
Xufeng Yan

2018 ◽  
Vol 8 (11) ◽  
pp. 2328 ◽  
Author(s):  
Lian Zhang ◽  
Zijian Chen ◽  
Lijuan Wang

A solar dedicated ventilation system based on active disturbance rejection controller (ADRC) has been designed in this study and tested by experimental research to acquire better control accuracy and energy-saving potential compared with former systems. This system involves photovoltaic, solar thermal, and dedicated ventilation systems and ADRC. The solar energy replaces traditional energy to realize energy-saving potential, and ADRC takes the place of a conventional controller to gain control accuracy. The experimental results show that the temperature standard deviation is from 0.09 to 0.15 °C and difference between maximum and minimum is 0.33 to 0.49 °C (<0.5 °C) at different outdoor conditions to meet accurate control requirements. The results also show the energy-saving potential of the solar dedicated ventilation system as being equal to the power consumption of traditional systems, not including extreme situations. The solar dedicated ventilation system was used for actual operation of the cooling system of a laboratory precisely and efficiently. Consequently, the solar dedicated ventilation system based on ADRC is most suitable for hot and humid places to achieve the energy-saving objective.


Sign in / Sign up

Export Citation Format

Share Document