Methods to Study 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase in Plant Growth-Promoting Bacteria

2015 ◽  
pp. 287-305
Author(s):  
Clarisse Brígido ◽  
Jin Duan ◽  
Bernard R. Glick
2007 ◽  
Vol 53 (12) ◽  
pp. 1291-1299 ◽  
Author(s):  
Youai Hao ◽  
Trevor C. Charles ◽  
Bernard R. Glick

In addition to the well-known roles of indoleacetic acid and cytokinin in crown gall formation, the plant hormone ethylene also plays an important role in this process. Many plant growth-promoting bacteria (PGPB) encode the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which can degrade ACC, the immediate precursor of ethylene in plants, to α-ketobutyrate and ammonia and thereby lower plant ethylene levels. To study the effect of ACC deaminase on crown gall development, an ACC deaminase gene from the PGPB Pseudomonas putida UW4 was introduced into Agrobacterium tumefaciens C58, so that the effect of ACC deaminase activity on tumour formation in tomato and castor bean plants could be assessed. Plants were also coinoculated with A. tumefaciens C58 and P. putida UW4 or P. putida UW4-acdS– (an ACC deaminase minus mutant strain). In both types of experiments, it was observed that the presence of ACC deaminase generally inhibited tumour development on both tomato and castor bean plants.


2001 ◽  
Vol 47 (4) ◽  
pp. 368-372 ◽  
Author(s):  
Donna M Penrose ◽  
Bernard R Glick

It was previously proposed that plant growth-promoting bacteria that possess 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase could utilize ACC that is present in the exudate of germinating canola seeds. The uptake and cleavage of ACC by these bacteria would lower the level of ACC, and thus ethylene within the plant, and reduce the extent of its inhibition on root elongation. To test part of the above mentioned model, ACC levels were monitored in canola seed tissues and exudate during germination. Lower amounts of ACC were present in the exudate and tissues of seeds treated with the plant growth-promoting bacterium Enterobacter cloacae CAL3, than in control seeds treated with MgSO4. The ACC-related compounds, α- and γ-aminobutyric acids, both known to stimulate ethylene production, were also measured in the canola seed exudate and tissues. Approximately the same levels of α-aminobutyric acid were present in the exudates of the bacterium-treated seeds and the control seeds, but the amount of α-aminobutyric acid was lower in the tissues of the bacterium-treated seeds than in the control seeds. Smaller quantities of γ-aminobutyric acid were seen in both the exudate and tissues of the E. cloacae CAL3-treated seeds than in the control seeds.Key words: ACC ethylene, canola, seed extract, seed exudate, plant growth-promoting bacteria.


2001 ◽  
Vol 47 (8) ◽  
pp. 698-705 ◽  
Author(s):  
Saleema S Saleh ◽  
Bernard R Glick

The plant growth-promoting bacteria Enterobacter cloacae CAL2 and UW4 were genetically transformed with a multicopy plasmid containing an rpoS or gacS gene from Pseudomonas fluorescens. The transformed strains were compared with the nontransformed strains for growth, indoleacetic acid (IAA) production, antibiotic production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, siderophore production, cell morphology, and the ability to promote canola root elongation. All transformed strains had a longer lag phase, were slower in reaching stationary phase, and attained a higher cell density than the nontransformed strains. Transformation resulted in cells that were significantly shorter than the nontransformed cells. The transformed strains also produced significantly more IAA than the nontransformed strains. Introduction of rpoS or gacS from Pseudomonas fluorescens was associated with a reduction in the production of both antibiotics, 2,4-diacetylphloroglucinol and mono-acetylphloroglucinol, produced by Enterobacter cloacae CAL2. With Enterobacter cloacae CAL2, plasmid-borne rpoS, but not gacS, increased the level of ACC deaminase activity, while introduction of rpoS in Enterobacter cloacae UW4 caused a decrease in ACC deaminase activity. Neither gacS nor rpoS significantly affected the level of siderophores synthesized by either bacterial strain. Overproduction of either GacA or RpoS in Enterobacter cloacae CAL2 resulted in a significant increase in the root lengths of canola seedlings when seeds were treated with the bacteria, and overproduction of RpoS caused an increase in canola shoot as well as root lengths.Key words: plant growth-promoting bacteria, canola, ethylene, ACC deaminase, GacS, RpoS, indoleacetic acid, siderophores, antibiotics.


2001 ◽  
Vol 47 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Donna M Penrose ◽  
Barbara A Moffatt ◽  
Bernard R Glick

Previously, it was proposed that plant growth-promoting bacteria that possess the enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, can reduce the amount of ethylene produced by a plant and thereby promote root elongation. To test this model, canola seeds were imbibed in the presence of the chemical ethylene inhibitor, 2-aminoethoxyvinyl glycine (AVG), various strains of plant growth-promoting bacteria, and a psychrophilic bacterium containing an ACC deaminase gene on a broad host range plasmid. The extent of root elongation and levels of ACC, the immediate precursor of ethylene, were measured in the canola seedling roots. A modification of the Waters AccQ*Tag Amino Acid Analysis Method(tm) was used to quantify ACC in the root extracts. It was found that, in the presence of the ethylene inhibitor, AVG, or any one of several ACC deaminase-containing strains of bacteria, the growth of canola seedling roots was enhanced and the ACC levels in these roots were lowered.


2021 ◽  
Vol 9 (9) ◽  
pp. 1841
Author(s):  
Angelika Fiodor ◽  
Surender Singh ◽  
Kumar Pranaw

Combating the consequences of climate change is extremely important and critical in the context of feeding the world’s population. Crop simulation models have been extensively studied recently to investigate the impact of climate change on agricultural productivity and food security. Drought and salinity are major environmental stresses that cause changes in the physiological, biochemical, and molecular processes in plants, resulting in significant crop productivity losses. Excessive use of chemicals has become a severe threat to human health and the environment. The use of beneficial microorganisms is an environmentally friendly method of increasing crop yield under environmental stress conditions. These microbes enhance plant growth through various mechanisms such as production of hormones, ACC deaminase, VOCs and EPS, and modulate hormone synthesis and other metabolites in plants. This review aims to decipher the effect of plant growth promoting bacteria (PGPB) on plant health under abiotic soil stresses associated with global climate change (viz., drought and salinity). The application of stress-resistant PGPB may not only help in the combating the effects of abiotic stressors, but also lead to mitigation of climate change. More thorough molecular level studies are needed in the future to assess their cumulative influence on plant development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zohreh Heydarian ◽  
Margaret Gruber ◽  
Cathy Coutu ◽  
Bernard R. Glick ◽  
Dwayne D. Hegedus

AbstractGrowth of plants in soil inoculated with plant growth promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase or expression of the corresponding acdS gene in transgenic lines reduces the decline in shoot length, shoot weight and photosynthetic capacity triggered by salt stress in Camelina sativa. Reducing the levels of ethylene attenuated the salt stress response as inferred from decreases in the expression of genes involved in development, senescence, chlorosis and leaf abscission that are highly induced by salt to levels that may otherwise have a negative effect on plant growth and productivity. Growing plants in soil treated with Pseudomonas migulae 8R6 negatively affected ethylene signaling, auxin and JA biosynthesis and signalling, but had a positive effect on the regulation of genes involved in GA signaling. In plants expressing acdS, the expression of the genes involved in auxin signalling was positively affected, while the expression of genes involved in cytokinin degradation and ethylene biosynthesis were negatively affected. Moreover, fine-tuning of ABA signaling appears to result from the application of ACC deaminase in response to salt treatment. Moderate expression of acdS under the control of the root specific rolD promoter or growing plants in soil treated with P. migulae 8R6 were more effective in reducing the expression of the genes involved in ethylene production and/or signaling than expression of acdS under the more active Cauliflower Mosaic Virus 35S promoter.


2021 ◽  
Vol 9 (3) ◽  
pp. 538 ◽  
Author(s):  
Paulina Vega-Celedón ◽  
Guillermo Bravo ◽  
Alexis Velásquez ◽  
Fernanda P. Cid ◽  
Miryam Valenzuela ◽  
...  

Cold stress decreases the growth and productivity of agricultural crops. Psychrotolerant plant growth-promoting bacteria (PGPB) may protect and promote plant growth at low temperatures. The aims of this study were to isolate and characterize psychrotolerant PGPB from wild flora of Andes Mountains and Patagonia of Chile and to formulate PGPB consortia. Psychrotolerant strains were isolated from 11 wild plants (rhizosphere and phyllosphere) during winter of 2015. For the first time, bacteria associated with Calycera, Orites, and Chusquea plant genera were reported. More than 50% of the 130 isolates showed ≥33% bacterial cell survival at temperatures below zero. Seventy strains of Pseudomonas, Curtobacterium, Janthinobacterium, Stenotrophomonas, Serratia, Brevundimonas, Xanthomonas, Frondihabitans, Arthrobacter, Pseudarthrobacter, Paenarthrobacter, Brachybacterium, Clavibacter, Sporosarcina, Bacillus, Solibacillus, Flavobacterium, and Pedobacter genera were identified by 16S rRNA gene sequence analyses. Ten strains were selected based on psychrotolerance, auxin production, phosphate solubilization, presence of nifH (nitrogenase reductase) and acdS (1-aminocyclopropane-1-carboxylate (ACC) deaminase) genes, and anti-phytopathogenic activities. Two of the three bacterial consortia formulated promoted tomato plant growth under normal and cold stress conditions. The bacterial consortium composed of Pseudomonas sp. TmR5a & Curtobacterium sp. BmP22c that possesses ACC deaminase and ice recrystallization inhibition activities is a promising candidate for future cold stress studies.


Sign in / Sign up

Export Citation Format

Share Document