A Lagrangian–Lagrangian Framework for the Simulation of Rigid and Deformable Bodies in Fluid

Author(s):  
Arman Pazouki ◽  
Radu Serban ◽  
Dan Negrut
2012 ◽  
Vol 117 (D23) ◽  
pp. n/a-n/a ◽  
Author(s):  
Zhe Feng ◽  
Xiquan Dong ◽  
Baike Xi ◽  
Sally A. McFarlane ◽  
Aaron Kennedy ◽  
...  

1960 ◽  
Vol 9 (2) ◽  
pp. 305-317 ◽  
Author(s):  
M. J. Lighthill

The paper seeks to determine what transverse oscillatory movements a slender fish can make which will give it a high Froude propulsive efficiency, $\frac{\hbox{(forward velocity)} \times \hbox{(thrust available to overcome frictional drag)}} {\hbox {(work done to produce both thrust and vortex wake)}}.$ The recommended procedure is for the fish to pass a wave down its body at a speed of around $\frac {5} {4}$ of the desired swimming speed, the amplitude increasing from zero over the front portion to a maximum at the tail, whose span should exceed a certain critical value, and the waveform including both a positive and a negative phase so that angular recoil is minimized. The Appendix gives a review of slender-body theory for deformable bodies.


2021 ◽  
Vol 118 (41) ◽  
pp. e2104975118
Author(s):  
Mengyue Sun ◽  
Nityanshu Kumar ◽  
Ali Dhinojwala ◽  
Hunter King

Thermodynamics tells us to expect underwater contact between two hydrophobic surfaces to result in stronger adhesion compared to two hydrophilic surfaces. However, the presence of water changes not only energetics but also the dynamic process of reaching a final state, which couples solid deformation and liquid evacuation. These dynamics can create challenges for achieving strong underwater adhesion/friction, which affects diverse fields including soft robotics, biolocomotion, and tire traction. Closer investigation, requiring sufficiently precise resolution of film evacuation while simultaneously controlling surface wettability, has been lacking. We perform high-resolution in situ frustrated total internal reflection imaging to track underwater contact evolution between soft-elastic hemispheres of varying stiffness and smooth–hard surfaces of varying wettability. Surprisingly, we find the exponential rate of water evacuation from hydrophobic–hydrophobic (adhesive) contact is three orders of magnitude lower than that from hydrophobic–hydrophilic (nonadhesive) contact. The trend of decreasing rate with decreasing wettability of glass sharply changes about a point where thermodynamic adhesion crosses zero, suggesting a transition in mode of evacuation, which is illuminated by three-dimensional spatiotemporal height maps. Adhesive contact is characterized by the early localization of sealed puddles, whereas nonadhesive contact remains smooth, with film-wise evacuation from one central puddle. Measurements with a human thumb and alternatively hydrophobic/hydrophilic glass surface demonstrate practical consequences of the same dynamics: adhesive interactions cause instability in valleys and lead to a state of more trapped water and less intimate solid–solid contact. These findings offer interpretation of patterned texture seen in underwater biolocomotive adaptations as well as insight toward technological implementation.


2018 ◽  
Vol 157 ◽  
pp. 02012 ◽  
Author(s):  
Marián Handrik ◽  
Milan Vaško

The article deals with the design and testing of a computational model for multi-body contact of deformable bodies in the flowing fluid. The computational model will be designed to allow easy modify the impact area of deformable bodies and their shape. The computational model must allow the application of an endless cycle of bodies impact with the possibility of restarting and calculating the following time intervals for collision of bodies.


The Moon ◽  
1974 ◽  
Vol 10 (3-4) ◽  
pp. 337-355 ◽  
Author(s):  
J. N. Tokis

Sign in / Sign up

Export Citation Format

Share Document