Networks Community Detection Using Artificial Bee Colony Swarm Optimization

Author(s):  
Ahmed Ibrahem Hafez ◽  
Hossam M. Zawbaa ◽  
Aboul Ella Hassanien ◽  
Aly A. Fahmy
2021 ◽  
pp. 004051752110001
Author(s):  
Pengpeng Cheng ◽  
Xianyi Zeng ◽  
Pascal Bruniaux ◽  
Jianping Wang ◽  
Daoling Chen

To study the upper body characteristics of young men, the body circumference, length, width, thickness, and angle of young men aged 18–25 and 26–35 years were collected to comprehensively characterize the concave and convex features of the front, back, and side of the human body. The Cuckoo Search-Density Peak intelligent algorithm was used to extract the feature factors of the upper body of men, and to cluster them. To verify the effectiveness of the intelligent algorithm, the clustering results of Cuckoo Search-Density Peak, Density Peak, Particle Swarm Optimization-Density Peak algorithm, Ant Colony Optimization-Density Peak algorithm, Genetic Algorithm-Density Peak algorithm, and Artificial Bee Colony-Density Peak algorithm were evaluated by Silouette and F-measures, respectively. The results show that the Cuckoo Search-Density Peak algorithm has the best clustering results and is superior to other algorithms. There are some differences in somatotype characteristics and somatotype indexes between young men aged 18–25 and 26–35 years.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jasleen Kaur ◽  
Punam Rani ◽  
Brahm Prakash Dahiya

Purpose This paper aim to find optimal cluster head and minimize energy wastage in WSNs. Wireless sensor networks (WSNs) have low power sensor nodes that quickly lose energy. Energy efficiency is most important factor in WSNs, as they incorporate limited sized batteries that would not be recharged or replaced. The energy possessed by the sensor nodes must be optimally used so as to increase the lifespan. The research is proposing hybrid artificial bee colony and glowworm swarm optimization [Hybrid artificial bee colony and glowworm swarm optimization (HABC-GSO)] algorithm to select the cluster heads. Previous research has considered fitness-based glowworm swarm with Fruitfly (FGF) algorithm, but existing research was limited to maximizing network lifetime and energy efficiency. Design/methodology/approach The proposed HABC-GSO algorithm selects global optima and improves convergence ratio. It also performs optimal cluster head selection by balancing between exploitation and exploration phases. The simulation is performed in MATLAB. Findings The HABC-GSO performance is evaluated with existing algorithms such as particle swarm optimization, GSO, Cuckoo Search, Group Search Ant Lion with Levy Flight, Fruitfly Optimization algorithm and grasshopper optimization algorithm, a new FGF in the terms of alive nodes, normalized energy, cluster head distance and delay. Originality/value This research work is original.


2018 ◽  
Vol 19 (2) ◽  
pp. 103 ◽  
Author(s):  
Doddy Prayogo ◽  
Richard Antoni Gosno ◽  
Richard Evander ◽  
Sentosa Limanto

Penelitian ini menyelidiki performa dari metode metaheuristik baru bernama symbiotic organisms search (SOS) dalam menentukan tata letak fasilitas proyek konstruksi yang optimal berdasarkan jarak tempuh pekerja. Dua buah studi kasus tata letak fasilitas digunakan untuk menguji akurasi dan konsistensi dari SOS. Sebagai tambahan, tiga metode metaheuristik lainnya, yaitu particle swarm optimization, artificial bee colony, dan teaching–learning-based optimization, digunakan sebagai pembanding terhadap algoritma SOS. Hasil simulasi mengindikasikan bahwa algoritma SOS lebih unggul serta memiliki karakteristik untuk menghasilkan titik konvergen lebih cepat jika dibandingkan dengan metode metaheuristik lainnya dalam proses optimasi tata letak fasilitas proyek konstruksi.


Author(s):  
Prativa Agarwalla ◽  
Sumitra Mukhopadhyay

Pathway information for cancer detection helps to find co-regulated gene groups whose collective expression is strongly associated with cancer development. In this paper, a collaborative multi-swarm binary particle swarm optimization (MS-BPSO) based gene selection technique is proposed that outperforms to identify the pathway marker genes. We have compared our proposed method with various statistical and pathway based gene selection techniques for different popular cancer datasets as well as a detailed comparative study is illustrated using different meta-heuristic algorithms like binary coded particle swarm optimization (BPSO), binary coded differential evolution (BDE), binary coded artificial bee colony (BABC) and genetic algorithm (GA). Experimental results show that the proposed MS-BPSO based method performs significantly better and the improved multi swarm concept generates a good subset of pathway markers which provides more effective insight to the gene-disease association with high accuracy and reliability.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 603 ◽  
Author(s):  
Kuei-Hsiang Chao ◽  
Cheng-Chieh Hsieh

In this study, the output characteristics of partial modules in a photovoltaic module array when subject to shading were first explored. Then, an improved particle swarm optimization (PSO) algorithm was applied to track the global maximum power point (MPP), with a multi-peak characteristic curve. The improved particle swarm optimization algorithm proposed, combined with the artificial bee colony (ABC) algorithm, was used to adjust the weighting, cognition learning factor, and social learning factor, and change the number of iterations to enhance the tracking performance of the MPP tracker. Finally, MATLAB software was used to carry out a simulation and prove the improved that the PSO algorithm successfully tracked the MPP in the photovoltaic array output curve with multiple peaks. Its tracking performance is far superior to the existing PSO algorithm.


Sign in / Sign up

Export Citation Format

Share Document