Diabetes-Related Topic Detection in Chinese Health Websites Using Deep Learning

Author(s):  
Xinhuan Chen ◽  
Yong Zhang ◽  
Chunxiao Xing ◽  
Xiao Liu ◽  
Hsinchun Chen
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yiting Zhu

The automatic scoring system of business English essay has been widely used in the field of education, and it is indispensable for the task of off-topic detection of essay. Most of the traditional off-topic detection methods convert text into vector representation of vector space and then calculate the similarity between the text and the correct text to get the off-topic result. However, those methods only focus on the structure of the text, but ignore the semantic association. In addition, the traditional detection method has a low off-topic detection effect for essays with high divergence. In view of the above problems, this paper proposes an off-topic detection method for business English essay based on the deep learning model. Firstly, the word2vec model is used to represent words in sentences as word vectors. And, LDA is used to extract the vector of topic and text, respectively. Then, word vector and topic word vector are spliced together as the input of the convolutional neural network (CNN). CNN is used to extract and screen the features of sentences and perform similarity calculation. When the similarity is less than the threshold, the paper also maps the topic and the subject words in the coupling space and calculates their relevance. Finally, unsupervised off-topic detection is realized by the clustering method. The experimental results show that the off-topic detection method based on the deep learning model can improve the detection accuracy of both the essays with low divergence and the essays with high divergence to a certain extent, especially the essays with high divergence.


Author(s):  
Karel Gutiérrez-Batista ◽  
Jesús R. Campaña ◽  
Maria-Amparo Vila ◽  
Maria J. Martin-Bautista

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4665
Author(s):  
Beakcheol Jang ◽  
Myeonghwi Kim ◽  
Inhwan Kim ◽  
Jong Wook Kim

Due to the prevalence of globalization and the surge in people’s traffic, diseases are spreading more rapidly than ever and the risks of sporadic contamination are becoming higher than before. Disease warnings continue to rely on censored data, but these warning systems have failed to cope with the speed of disease proliferation. Due to the risks associated with the problem, there have been many studies on disease outbreak surveillance systems, but existing systems have limitations in monitoring disease-related topics and internationalization. With the advent of online news, social media and search engines, social and web data contain rich unexplored data that can be leveraged to provide accurate, timely disease activities and risks. In this study, we develop an infectious disease surveillance system for extracting information related to emerging diseases from a variety of Internet-sourced data. We also propose an effective deep learning-based data filtering and ranking algorithm. This system provides nation-specific disease outbreak information, disease-related topic ranking, a number of reports per district and disease through various visualization techniques such as a map, graph, chart, correlation and coefficient, and word cloud. Our system provides an automated web-based service, and it is free for all users and live in operation.


Author(s):  
Stellan Ohlsson
Keyword(s):  

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


2020 ◽  
Author(s):  
B Böttcher ◽  
E Beller ◽  
A Busse ◽  
F Streckenbach ◽  
M Weber ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
L Pennig ◽  
L Lourenco Caldeira ◽  
C Hoyer ◽  
L Görtz ◽  
R Shahzad ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document