Completion of Band-Limited Data Sets on the Sphere

Author(s):  
W.-D. Schuh ◽  
S. Müller ◽  
J. M. Brockmann
Keyword(s):  
Author(s):  
Soi Avgeridou ◽  
Ilija Djordjevic ◽  
Anton Sabashnikov ◽  
Kaveh Eghbalzadeh ◽  
Laura Suhr ◽  
...  

AbstractExtracorporeal membrane oxygenation (ECMO) plays an important role as a life-saving tool for patients with therapy-refractory cardio-respiratory failure. Especially, for rare and infrequent indications, scientific data is scarce. The conducted paper focuses primarily on our institutional experience with a 19-year-old patient suffering an acute chest syndrome, a pathognomonic pulmonary condition presented by patients with sickle cell disease. After implementation of awake ECMO therapy, the patient was successfully weaned off support and discharged home 22 days after initiation of the extracorporeal circulation. In addition to limited data and current literature, further and larger data sets are necessary to determine the outcome after ECMO therapy for this rare indication.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. V37-V46 ◽  
Author(s):  
Mirko van der Baan ◽  
Dinh-Tuan Pham

Robust blind deconvolution is a challenging problem, particularly if the bandwidth of the seismic wavelet is narrow to very narrow; that is, if the wavelet bandwidth is similar to its principal frequency. The main problem is to estimate the phase of the wavelet with sufficient accuracy. The mutual information rate is a general-purpose criterion to measure whiteness using statistics of all orders. We modified this criterion to measure robustly the amplitude and phase spectrum of the wavelet in the presence of noise. No minimum phase assumptions were made. After wavelet estimation, we obtained an optimal deconvolution output using Wiener filtering. The new procedure performs well, even for very band-limited data; and it produces frequency-dependent phase estimates.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. R57-R74 ◽  
Author(s):  
Santi Kumar Ghosh ◽  
Animesh Mandal

Because seismic reflection data are band limited, acoustic impedance profiles derived from them are nonunique. The conventional inversion methods counter the nonuniqueness either by stabilizing the answer with respect to an initial model or by imposing mathematical constraints such as sparsity of the reflection coefficients. By making a nominal assumption of an earth model locally consisting of a stack of homogeneous and horizontal layers, we have formulated a set of linear equations in which the reflection coefficients are the unknowns and the recursively integrated seismic trace constitute the data. Drawing only on first principles, the Zoeppritz equation in this case, the approach makes a frontal assault on the problem of reconstructing reflection coefficients from band-limited data. The local layer-cake assumption and the strategy of seeking a singular value decomposition solution of the linear equations counter the nonuniqueness, provided that the objective is to reconstruct a smooth version of the impedance profile that includes only its crude structures. Tests on synthetic data generated from elementary models and from measured logs of acoustic impedance demonstrated the efficacy of the method, even when a significant amount of noise was added to the data. The emergence of consistent estimates of impedance, approximating the original impedance, from synthetic data generated for several frequency bands has inspired our confidence in the method. The other attractive outputs of the method are as follows: (1) an accurate estimate of the impedance mean, (2) an accurate reconstruction of the direct-current (DC) frequency of the reflectivity, and (3) an acceptable reconstruction of the broad outline of the original impedance profile. These outputs can serve as constraints for either more refined inversions or geologic interpretations. Beginning from the restriction of band-limited data, we have devised a method that neither requires a starting input model nor imposes mathematical constraints on the earth reflectivity and still yielded significant and relevant geologic information.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Selin Karatepe ◽  
Kenneth W. Corscadden

This paper presents a novel approach for accurately modeling and ultimately predicting wind speed for selected sites when incomplete data sets are available. The application of a seasonal simulation for the synthetic generation of wind speed data is achieved using the Markov chain Monte Carlo technique with only one month of data from each season. This limited data model was used to produce synthesized data that sufficiently captured the seasonal variations of wind characteristics. The model was validated by comparing wind characteristics obtained from time series wind tower data from two countries with Markov chain Monte Carlo simulations, demonstrating that one month of wind speed data from each season was sufficient to generate synthetic wind speed data for the related season.


2021 ◽  
Vol 16 (2) ◽  
pp. 359-380
Author(s):  
Geoffroy Clippel ◽  
Kareen Rozen

Bounded rationality theories are typically characterized over exhaustive data sets. We develop a methodology to understand the empirical content of such theories with limited data, adapting the classic revealed‐preference approach to new forms of revealed information. We apply our approach to an array of theories, illustrating its versatility. We identify theories and data sets testable in the same elegant way as rationality, and theories and data sets where testing is more challenging. We show that previous attempts to test consistency of limited data with bounded rationality theories are subject to a conceptual pitfall that may lead to false conclusions that the data are consistent with the theory.


2009 ◽  
Vol 19 (09) ◽  
pp. 3109-3117 ◽  
Author(s):  
TOMOHIRO SHIRAKAWA ◽  
ANDREW ADAMATZKY ◽  
YUKIO-PEGIO GUNJI ◽  
YOSHIHIRO MIYAKE

We experimentally demonstrate that both Voronoi diagram and its dual graph Delaunay triangulation are simultaneously constructed — for specific conditions — in cultures of plasmodium, a vegetative state of Physarum polycephalum. Every point of a given planar data set is represented by a tiny mass of plasmodium. The plasmodia spread from their initial locations but, in certain conditions, stop spreading when they encounter plasmodia originated from different locations. Thus space loci not occupied by the plasmodia represent edges of Voronoi diagram of the given planar set. At the same time, the plasmodia originating at neighboring locations form merging protoplasmic tubes, where the strongest tubes approximate Delaunay triangulation of the given planar set. The problems are solved by plasmodium only for limited data sets, however the results presented lay a sound ground for further investigations.


Sign in / Sign up

Export Citation Format

Share Document