Linking Cases Up: An Extension to the Case Retrieval Network

Author(s):  
Shubhranshu Shekhar ◽  
Sutanu Chakraborti ◽  
Deepak Khemani
Keyword(s):  
2021 ◽  
Vol 11 (10) ◽  
pp. 4494
Author(s):  
Qicai Wu ◽  
Haiwen Yuan ◽  
Haibin Yuan

The case-based reasoning (CBR) method can effectively predict the future health condition of the system based on past and present operating data records, so it can be applied to the prognostic and health management (PHM) framework, which is a type of data-driven problem-solving. The establishment of a CBR model for practical application of the Ground Special Vehicle (GSV) PHM framework is in great demand. Since many CBR algorithms are too complicated in weight optimization methods, and are difficult to establish effective knowledge and reasoning models for engineering practice, an application development using a CBR model that includes case representation, case retrieval, case reuse, and simulated annealing algorithm is introduced in this paper. The purpose is to solve the problem of normal/abnormal determination and the degree of health performance prediction. Based on the proposed CBR model, optimization methods for attribute weights are described. State classification accuracy rate and root mean square error are adopted to setup objective functions. According to the reasoning steps, attribute weights are trained and put into case retrieval; after that, different rules of case reuse are established for these two kinds of problems. To validate the model performance of the application, a cross-validation test is carried on a historical data set. Comparative analysis of even weight allocation CBR (EW-CBR) method, correlation coefficient weight allocation CBR (CW-CBR) method, and SA weight allocation CBR (SA-CBR) method is carried out. Cross-validation results show that the proposed method can reach better results compared with the EW-CBR model and CW-CBR model. The developed PHM framework is applied to practical usage for over three years, and the proposed CBR model is an effective approach toward the best PHM framework solutions in practical applications.


2021 ◽  
pp. 1-13
Author(s):  
Kai Zhang ◽  
Jing Zheng ◽  
Ying-Ming Wang

Case-based reasoning (CBR) is one of the most popular methods used in emergency decision making (EDM). Case retrieval plays a key role in EDM processes based on CBR and usually functions by retrieving similar historical cases using similarity measurements. Decision makers (DMs), thus, choose the most appropriate historical cases. Although uncertainty and fuzziness are present in the EDM process, in-depth research on these issues is still lacking. In this study, a heterogeneous multi-attribute case retrieval method based on group decision making (GDM) with incomplete weight information is developed. First, the case similarities between historical and target cases are calculated, and a set of similar historical cases is constructed. Six formats of case attributes are considered, namely crisp numbers, interval numbers, linguistic variables, intuitionistic fuzzy numbers, single-valued neutrosophic numbers (NNs) and interval-valued NNs. Next, the evaluation information from the DMs is expressed using single-valued NNs. Additionally, the evaluation utilities of similar historical cases are obtained by aggregating the evaluation information. The comprehensive utilities of similar historical cases are obtained using case similarities and evaluation utilities. In this process, the weights of incomplete information are determined by constructing optimization models. Furthermore, the most appropriate similar historical case is selected according to the comprehensive utilities. Finally, the proposed method is demonstrated using two examples; its performance is then compared with those of other similar methods to demonstrate its validity and efficacy.


2013 ◽  
Vol 12 (04) ◽  
pp. 757-787 ◽  
Author(s):  
NABILA NOUAOURIA ◽  
MOUNIR BOUKADOUM

In Case-Based Reasoning (CBR), case retrieval is generally guided by similarity. However, the most similar case may not be the easiest one to reuse (hard to adapt). As recommended by Smyth and Keane, it might be more efficient to use an adaptability criterion to guide the retrieval process (adaptation-guided retrieval or AGR). In the same trend but with the goal of optimizing case reuse, our approach is to consider what is similar to copy and what is different to adapt during the retrieval stage. We introduce a more general framework for retrieval, namely the reuse-guided retrieval (RGR). The goal of this paper is twofold: first, it proposes a case retrieval approach that relies on reuse cost; then, it illustrates its use by integrating adaptation cost into the case retrieval net (CRN) memory model, a similarity-based case retrieval system. The described retrieval framework optimizes case reuse early in the inference cycle, without incurring the full cost of an adaptation step. Our results on two case studies reveal that the proposed approach yields better recall quality than CRN's similarity only-based retrieval while having similar computational complexity.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zhiwang Zhong ◽  
Tianhua Xu ◽  
Feng Wang ◽  
Tao Tang

In Discrete Event System, such as railway onboard system, overwhelming volume of textual data is recorded in the form of repair verbatim collected during the fault diagnosis process. Efficient text mining of such maintenance data plays an important role in discovering the best-practice repair knowledge from millions of repair verbatims, which help to conduct accurate fault diagnosis and predication. This paper presents a text case-based reasoning framework by cloud computing, which uses the diagnosis ontology for annotating fault features recorded in the repair verbatim. The extracted fault features are further reduced by rough set theory. Finally, the case retrieval is employed to search the best-practice repair actions for fixing faulty parts. By cloud computing, rough set-based attribute reduction and case retrieval are able to scale up the Big Data records and improve the efficiency of fault diagnosis and predication. The effectiveness of the proposed method is validated through a fault diagnosis of train onboard equipment.


Sign in / Sign up

Export Citation Format

Share Document