weight allocation
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 28)

H-INDEX

6
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Ye Xiaoming ◽  
Ding Shijun ◽  
Liu Haibo

Abstract In the traditional measurement theory, precision is defined as the dispersion of measured value, and is used as the basis of weights calculation in the adjustment of measurement data with different qualities, which leads to the trouble that trueness is completely ignored in the weight allocation. In this paper, following the pure concepts of probability theory, the measured value (observed value) is regarded as a constant, the error as a random variable, and the variance is the dispersion of all possible values of an unknown error. Thus, a rigorous formula for weights calculation and variance propagation is derived, which solves the theoretical trouble of determining the weight values in the adjustment of multi-channel observation data with different qualities. The results show that the optimal weights are not only determined by the covariance array of observation errors, but also related to the model of adjustment.


Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 122185
Author(s):  
Tao Sun ◽  
Shaoqing Wang ◽  
Sheng Jiang ◽  
Bowen Xu ◽  
Xuebing Han ◽  
...  

2022 ◽  
Vol E105.D (1) ◽  
pp. 180-183
Author(s):  
Weiwei LUO ◽  
Wenpeng ZHOU ◽  
Jinglong FANG ◽  
Lingyan FAN

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Qihui Ling ◽  
Juchuan Dai ◽  
Xingyun He ◽  
Shengzhao Chen ◽  
Zhewu Chen

The dynamic parameter allocation of the suspension system has an important influence on the comprehensive driving performance of the tracked vehicle. Usually, the allocation of suspension parameters is based on a single performance index, which has the disadvantage of not being able to achieve multi-performance optimization. Therefore, a novel optimization method using multi-performance index-oriented is presented. Firstly, considering the vertical vibration excitation caused by road roughness, the input (excitation) model of road roughness is embedded to establish the parametric dynamic model of the tracked vehicle. Then, the evaluation index and its quantitative algorithm, which reflect the multi-aspect performance of the suspension system, are proposed. Moreover, the parameter allocation objective function based on multi-index information fusion is designed. Finally, two allocation optimization methods are presented to solve the parameter allocation, i.e., equal weight allocation and expert knowledge-based weight allocation. By comparing the results obtained by the two methods, it is found that the performance of the suspension system can be improved effectively by optimizing the parameters of suspension stiffness and damping. Furthermore, the optimization of weight allocation based on expert knowledge is more effective. These provide a better knowledge reference for suspension system design.


Author(s):  
Christian Rudolph ◽  
Alexis Nsamzinshuti ◽  
Samuel Bonsu ◽  
Alassane Ballé Ndiaye ◽  
Nicolas Rigo

The use of cargo cycles for last-mile parcel distribution requires urban micro-consolidation centers (UMC). We develop an approach to localize suitable locations for UMCs with the consideration of three criteria: demand, land use, and type of road. The analysis considers metric levels (demand), linguistic levels (land use), and cardinal levels (type of road). The land-use category is divided into commercial, residential, mixed commercial and residential, and others. The type of road category is divided into bicycle road, pedestrian zone, oneway road, and traffic-calmed road. The approach is a hybrid multi-criteria analysis combining an Analytical Hierarchical Process (AHP) and PROMETHEE methods. We apply the approach to the city center of Stuttgart in Germany, using real demand data provided by a large logistics service provider. We compared different scenarios weighting the criteria differently with DART software. The different weight allocation results in different numbers of required UMCs and slightly different locations. This research was able to develop, implement, and successfully apply the proposed approach. In subsequent steps, stakeholders such as logistics companies and cities should be involved at all levels of this approach to validate the selected criteria and depict the “weight” of each criterion.


2021 ◽  
Author(s):  
Ye Xiaoming ◽  
Ding Shijun ◽  
Liu Haibo

Abstract In the traditional measurement theory, precision is defined as the dispersion of measured value, and is used as the basis of weights calculation in the adjustment of measurement data with different qualities, which leads to the trouble that trueness is completely ignored in the weight allocation. In this paper, following the pure concepts of probability theory, the measured value (observed value) is regarded as a constant, the error as a random variable, and the variance is the dispersion of all possible values of an unknown error. Thus, a rigorous formula for weights calculation and variance propagation is derived, which solves the theoretical trouble of determining the weight values in the adjustment of multi-channel observation data with different qualities. The results show that the optimal weights are not only determined by the covariance array of observation errors, but also related to the model of adjustment.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yubo Song ◽  
Yijin Geng ◽  
Junbo Wang ◽  
Shang Gao ◽  
Wei Shi

Since a growing number of malicious applications attempt to steal users’ private data by illegally invoking permissions, application stores have carried out many malware detection methods based on application permissions. However, most of them ignore specific permission combinations and application categories that affect the detection accuracy. The features they extracted are neither representative enough to distinguish benign and malicious applications. For these problems, an Android malware detection method based on permission sensitivity is proposed. First, for each kind of application categories, the permission features and permission combination features are extracted. The sensitive permission feature set corresponding to each category label is then obtained by the feature selection method based on permission sensitivity. In the following step, the permission call situation of the application to be detected is compared with the sensitive permission feature set, and the weight allocation method is used to quantify this information into numerical features. In the proposed method of malicious application detection, three machine-learning algorithms are selected to construct the classifier model and optimize the parameters. Compared with traditional methods, the proposed method consumed 60.94% less time while still achieving high accuracy of up to 92.17%.


2021 ◽  
Author(s):  
Ye Xiaoming ◽  
Ding Shijun ◽  
Liu Haibo

Abstract In the traditional measurement theory, precision is defined as the dispersion of measured value, and is used as the basis of weights calculation in the adjustment of measurement data with different qualities, which leads to the trouble that trueness is completely ignored in the weight allocation. In this paper, following the pure concepts of probability theory, the measured value (observed value) is regarded as a constant, the error as a random variable, and the variance is the dispersion of all possible values of an unknown error. Thus, a rigorous formula for weights calculation and variance propagation is derived, which solves the theoretical problem of determining the weight values in the adjustment of multi-channel observation data with different qualities. The results show that the optimal weights are not only determined by the covariance array of observation errors, but also related to the model of adjustment.


2021 ◽  
Vol 11 (10) ◽  
pp. 4494
Author(s):  
Qicai Wu ◽  
Haiwen Yuan ◽  
Haibin Yuan

The case-based reasoning (CBR) method can effectively predict the future health condition of the system based on past and present operating data records, so it can be applied to the prognostic and health management (PHM) framework, which is a type of data-driven problem-solving. The establishment of a CBR model for practical application of the Ground Special Vehicle (GSV) PHM framework is in great demand. Since many CBR algorithms are too complicated in weight optimization methods, and are difficult to establish effective knowledge and reasoning models for engineering practice, an application development using a CBR model that includes case representation, case retrieval, case reuse, and simulated annealing algorithm is introduced in this paper. The purpose is to solve the problem of normal/abnormal determination and the degree of health performance prediction. Based on the proposed CBR model, optimization methods for attribute weights are described. State classification accuracy rate and root mean square error are adopted to setup objective functions. According to the reasoning steps, attribute weights are trained and put into case retrieval; after that, different rules of case reuse are established for these two kinds of problems. To validate the model performance of the application, a cross-validation test is carried on a historical data set. Comparative analysis of even weight allocation CBR (EW-CBR) method, correlation coefficient weight allocation CBR (CW-CBR) method, and SA weight allocation CBR (SA-CBR) method is carried out. Cross-validation results show that the proposed method can reach better results compared with the EW-CBR model and CW-CBR model. The developed PHM framework is applied to practical usage for over three years, and the proposed CBR model is an effective approach toward the best PHM framework solutions in practical applications.


2021 ◽  
Vol 7 ◽  
pp. e388
Author(s):  
Duc N. M. Hoang ◽  
Duc M. Tran ◽  
Thanh-Sang Tran ◽  
Hoang-Anh Pham

Cooperative navigation for fleets of robots conventionally adopts algorithms based on Reynolds's flocking rules, which usually use a weighted sum of vectors for calculating the velocity from behavioral velocity vectors with corresponding fixed weights. Although optimal values of the weighting coefficients giving good performance can be found through many experiments for each particular scenario, the overall performance could not be guaranteed due to unexpected conditions not covered in experiments. This paper proposes a novel control scheme for a swarm of Unmanned Aerial Vehicles (UAVs) that also employs the original Reynolds rules but adopts an adaptive weight allocation mechanism based on the current context than being fixed at the beginning. The simulation results show that our proposed scheme has better performance than the conventional Reynolds-based ones in terms of the flock compactness and the reduction in the number of crashed swarm members due to collisions. The analytical results of behavioral rules’ impact also validate the proposed weighting mechanism's effectiveness leading to improved performance.


Sign in / Sign up

Export Citation Format

Share Document