Deep Learning of Multifractal Attributes from Motor Imagery Induced EEG

Author(s):  
Junhua Li ◽  
Andrzej Cichocki
Keyword(s):  
Author(s):  
Hamdi Altaheri ◽  
Ghulam Muhammad ◽  
Mansour Alsulaiman ◽  
Syed Umar Amin ◽  
Ghadir Ali Altuwaijri ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


2018 ◽  
Vol 15 (3) ◽  
pp. 036028 ◽  
Author(s):  
Antonio Maria Chiarelli ◽  
Pierpaolo Croce ◽  
Arcangelo Merla ◽  
Filippo Zappasodi

Computers ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 104
Author(s):  
Saraswati Sridhar ◽  
Vidya Manian

Electroencephalogram signals are used to assess neurodegenerative diseases and develop sophisticated brain machine interfaces for rehabilitation and gaming. Most of the applications use only motor imagery or evoked potentials. Here, a deep learning network based on a sensory motor paradigm (auditory, olfactory, movement, and motor-imagery) that employs a subject-agnostic Bidirectional Long Short-Term Memory (BLSTM) Network is developed to assess cognitive functions and identify its relationship with brain signal features, which is hypothesized to consistently indicate cognitive decline. Testing occurred with healthy subjects of age 20–40, 40–60, and >60, and mildly cognitive impaired subjects. Auditory and olfactory stimuli were presented to the subjects and the subjects imagined and conducted movement of each arm during which Electroencephalogram (EEG)/Electromyogram (EMG) signals were recorded. A deep BLSTM Neural Network is trained with Principal Component features from evoked signals and assesses their corresponding pathways. Wavelet analysis is used to decompose evoked signals and calculate the band power of component frequency bands. This deep learning system performs better than conventional deep neural networks in detecting MCI. Most features studied peaked at the age range 40–60 and were lower for the MCI group than for any other group tested. Detection accuracy of left-hand motor imagery signals best indicated cognitive aging (p = 0.0012); here, the mean classification accuracy per age group declined from 91.93% to 81.64%, and is 69.53% for MCI subjects. Motor-imagery-evoked band power, particularly in gamma bands, best indicated (p = 0.007) cognitive aging. Although the classification accuracy of the potentials effectively distinguished cognitive aging from MCI (p < 0.05), followed by gamma-band power.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Mamunur Rashid ◽  
Minarul Islam ◽  
Norizam Sulaiman ◽  
Bifta Sama Bari ◽  
Ripon Kumar Saha ◽  
...  

2021 ◽  
Vol 63 ◽  
pp. 102172
Author(s):  
Ali Al-Saegh ◽  
Shefa A. Dawwd ◽  
Jassim M. Abdul-Jabbar
Keyword(s):  

2019 ◽  
Vol 36 (6) ◽  
Author(s):  
Ahmad Hassanpour ◽  
Majid Moradikia ◽  
Hojjat Adeli ◽  
Seyed Raouf Khayami ◽  
Pirooz Shamsinejadbabaki

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1736 ◽  
Author(s):  
Ikhtiyor Majidov ◽  
Taegkeun Whangbo

Single-trial motor imagery classification is a crucial aspect of brain–computer applications. Therefore, it is necessary to extract and discriminate signal features involving motor imagery movements. Riemannian geometry-based feature extraction methods are effective when designing these types of motor-imagery-based brain–computer interface applications. In the field of information theory, Riemannian geometry is mainly used with covariance matrices. Accordingly, investigations showed that if the method is used after the execution of the filterbank approach, the covariance matrix preserves the frequency and spatial information of the signal. Deep-learning methods are superior when the data availability is abundant and while there is a large number of features. The purpose of this study is to a) show how to use a single deep-learning-based classifier in conjunction with BCI (brain–computer interface) applications with the CSP (common spatial features) and the Riemannian geometry feature extraction methods in BCI applications and to b) describe one of the wrapper feature-selection algorithms, referred to as the particle swarm optimization, in combination with a decision tree algorithm. In this work, the CSP method was used for a multiclass case by using only one classifier. Additionally, a combination of power spectrum density features with covariance matrices mapped onto the tangent space of a Riemannian manifold was used. Furthermore, the particle swarm optimization method was implied to ease the training by penalizing bad features, and the moving windows method was used for augmentation. After empirical study, the convolutional neural network was adopted to classify the pre-processed data. Our proposed method improved the classification accuracy for several subjects that comprised the well-known BCI competition IV 2a dataset.


Sign in / Sign up

Export Citation Format

Share Document