Monitoring Fatigue Life Expenditure & Detecting Crack Initiation

Author(s):  
John H. Jensen
Author(s):  
Masao Itatani ◽  
Keisuke Tanaka ◽  
Isao Ohkawa ◽  
Takehisa Yamada ◽  
Toshiyuki Saito

Fatigue tests of smooth and notched round bars of austenitic stainless steels SUS316NG and SUS316L were conducted under cyclic tension and cyclic torsion with and without static tension. Fatigue strength under fully reversed (R=−1) cyclic tension once increased with increasing stress concentration factor up to Kt=1.5, but it decreased from Kt=1.5 to 2.5. Fatigue life increased with increasing stress concentration under pure cyclic torsion, while it decreased with increasing stress concentration under cyclic torsion with static tension. From the measurement of fatigue crack initiation and propagation lives using electric potential drop method, it was found that the crack initiation life decreased with increasing stress concentration and the crack propagation life increased with increasing stress concentration under pure cyclic torsion. Under cyclic torsion with static tension, the crack initiation life also decreased with increasing stress concentration but the crack propagation life decreased or not changed with increasing stress concentration then the total fatigue life of sharper notched specimen decreased. It was also found that the fatigue life of smooth specimen under cyclic torsion with static tension was longer than that under pure cyclic torsion. This behavior could be explained based on the cyclic strain hardening under non-proportional loading and the difference in crack path with and without static tension.


2013 ◽  
Vol 577-578 ◽  
pp. 429-432 ◽  
Author(s):  
Yukio Miyashita ◽  
Kyohei Kushihata ◽  
Toshifumi Kakiuchi ◽  
Mitsuhiro Kiyohara

Fatigue Property of an Extruded AZ61 Magnesium Alloy with the Processing Layer Introduced by Machining was Investigated. Rotating Bending Fatigue Tests were Carried out with the Specimen with and without the Processing Layer. According to Results of the Fatigue Tests, Fatigue Life Significantly Increased by Introducing the Processing Layer to the Specimen Surface. Fatigue Crack Initiation and Propagation Behaviors were Observed by Replication Technique during the Fatigue Test. Fatigue Crack Initiation Life of the Specimen with the Processing Layer was Slightly Longer than that of the Specimen without the Processing Layer. Higher Fatigue Crack Growth Resistance was also Observed when the Fatigue Crack was Growing in the Processing Layer in the Specimen with the Processing Layer. the Longer Fatigue Life Observed in the Fatigue Test in the Specimen with the Processing Layer could be Mainly due to the Higher Crack Growth Resistance. it is Speculated that the Fatigue Strength can be Controlled by Change in Condition of Machining Process. it could be Effective way in Industry to Improved Fatigue Strength only by the Cutting Process without Additional Surface Treatment Process.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 914 ◽  
Author(s):  
Qingyuan Song ◽  
Yanqing Li ◽  
Lei Wang ◽  
Ruxu Huang ◽  
Chengqi Sun

Frequency is an important factor influencing the fatigue behavior. Regarding to the dwell fatigue, it corresponds to the effect of rise and fall time, which is also an important issue especially for the safety evaluation of structure parts under dwell fatigue loading, such as the engines of aircrafts and the pressure hulls of deep-sea submersibles. In this paper, the effect of rise and fall time (2 s, 20 s, 110 s, and 200 s) on the dwell fatigue behavior is investigated for a high strength titanium alloy Ti-6Al-2Sn-2Zr-3Mo-X with basket-weave microstructure. It is shown that the dwell fatigue life decreases with increasing the rise and fall time, which could be correlated by a linear relation in log–log scale for both the specimen with circular cross section and the specimen with square cross section. The rise and fall time has no influence on the crack initiation mechanism by the scanning electron microscope observation. The cracks initiate from the specimen surface and all the fracture surfaces present multiple crack initiation sites. Moreover, the facet characteristic is observed at some crack initiation sites for both the conventional fatigue and dwell fatigue tests. The paper also indicates that the dwell period of the peak stress reduces the fatigue life and the dwell fatigue life seems to be longer for the specimen with circular cross section than that of the specimen with square cross section.


2019 ◽  
Vol 54 (2) ◽  
pp. 79-94 ◽  
Author(s):  
Arash P Jirandehi ◽  
TN Chakherlou

Fatigue life estimation accuracy of mechanical parts and assemblies has always been the source of concern in different industries. The main contribution of this article lies in a study on the accuracy of different multiaxial fatigue criteria, proposing and investigating the accuracy of four optimized fatigue crack initiation life estimation methods—volume, weighted volume, surface and point, thereby improving the multiaxial fatigue life estimation accuracy. In order to achieve the goal, the fatigue lives of bolt clamped specimens, previously tested under defined experimental conditions, were estimated during fatigue crack initiation and fatigue crack growth and then summed together. In the fatigue crack initiation part, a code was written and used in the MATLAB software environment based on critical plane approach and the different multiaxial fatigue criteria. Besides the AFGROW software was utilized to estimate the crack growth share of fatigue life. Experimental and numerical results showed to be in agreement. Furthermore, detailed study and comparison of the results with the available experimental data showed that a combination of Smith–Watson–Topper approach and volume method results in lower error values, while a combination of Fatemi–Socie criterion and surface or point method presents estimated lives with lower error values. In addition, the numerical proposed procedure resulted in a good prediction of the location of fatigue crack initiation.


2019 ◽  
Vol 9 (21) ◽  
pp. 4590 ◽  
Author(s):  
Markus J. Ottersböck ◽  
Martin Leitner ◽  
Michael Stoschka ◽  
Wilhelm Maurer

The division of the total fatigue life into different stages such as crack initiation and propagation is an important issue in regard to an improved fatigue assessment especially for high-strength welded joints. The transition between these stages is fluent, whereas the threshold between the two phases is referred to as technical crack initiation. This work presents a procedure to track crack initiation and propagation during fatigue tests of ultra high-strength steel welded joints. The method utilizes digital image correlation to calculate a distortion field of the specimens’ surface enabling the identification and measurement of cracks along the weld toe arising during the fatigue test. Hence, technical crack initiation of each specimen can be derived. An evaluation for ten ultra high-strength steel butt joints reveals, that for this superior strength steel grade more than 50% of fatigue life is spent up to a crack depth of 0.5 mm, which can be defined as initial crack. Furthermore, a notch-stress based fatigue assessment of these specimens considering the actual weld topography and crack initiation and propagation phase is performed. The results point out that two phase models considering both phases enable an increased accuracy of service life assessment.


Sign in / Sign up

Export Citation Format

Share Document