Integrating Electric Energy Demand of Machine Tool Processes as Resource for Production Planning Software

Author(s):  
Detlef Gerhard
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3204
Author(s):  
Michał Sabat ◽  
Dariusz Baczyński

Transmission, distribution, and micro-grid system operators are struggling with the increasing number of renewables and the changing nature of energy demand. This necessitates the use of prognostic methods based on ever shorter time series. This study depicted an attempt to develop an appropriate method by introducing a novel forecasting model based on the idea to use the Pareto fronts as a tool to select data in the forecasting process. The proposed model was implemented to forecast short-term electric energy demand in Poland using historical hourly demand values from Polish TSO. The study rather intended on implementing the range of different approaches—scenarios of Pareto fronts usage than on a complex evaluation of the obtained results. However, performance of proposed models was compared with a few benchmark forecasting models, including naïve approach, SARIMAX, kNN, and regression. For two scenarios, it has outperformed all other models by minimum 7.7%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junli Shi ◽  
Junyu Hu ◽  
Mingyang Ma ◽  
Huaizhi Wang

Purpose The purpose of this paper is to present a method for the environmental impact analysis of machine-tool cutting, which enables the detailed analysis of inventory data on resource consumption and waste emissions, as well as the quantitative evaluation of environmental impact. Design/methodology/approach The proposed environmental impact analysis method is based on the life cycle assessment (LCA) methodology. In this method, the system boundary of the cutting unit is first defined, and inventory data on energy and material consumptions are analyzed. Subsequently, through classification, five important environmental impact categories are proposed, namely, primary energy demand, global warming potential, acidification potential, eutrophication potential and photochemical ozone creation potential. Finally, the environmental impact results are obtained through characterization and normalization. Findings This method is applied on a case study involving a machine-tool turning unit. Results show that primary energy demand and global warming potential exert the serious environmental impact in the turning unit. Suggestions for improving the environmental performance of the machine-tool turning are proposed. Originality/value The environmental impact analysis method is applicable to different machine tools and cutting-unit processes. Moreover, it can guide and support the development of green manufacturing by machinery manufacturers.


2016 ◽  
Vol 37 (3) ◽  
pp. 79-93 ◽  
Author(s):  
Jan Wajs ◽  
Dariusz Mikielewicz ◽  
Michał Bajor ◽  
Zbigniew Kneba

AbstractThe results of investigations conducted on the prototype of vapour driven micro-CHP unit integrated with a gas boiler are presented. The system enables cogeneration of heat and electric energy to cover the energy demand of a household. The idea of such system is to produce electricity for own demand or for selling it to the electric grid – in such situation the system user will became the prosumer. A typical commercial gas boiler, additionally equipped with an organic Rankine cycle (ORC) module based on environmentally acceptable working fluid can be regarded as future generation unit. In the paper the prototype of innovative domestic cogenerative ORC system, consisting of a conventional gas boiler and a small size axial vapour microturbines (in-house designed for ORC and the commercially available for Rankine cycle (RC)), evaporator and condenser were scrutinised. In the course of study the fluid working temperatures, rates of heat, electricity generation and efficiency of the whole system were obtained. The tested system could produce electricity in the amount of 1 kWe. Some preliminary tests were started with water as working fluid and the results for that case are also presented. The investigations showed that domestic gas boiler was able to provide the saturated/superheated ethanol vapour (in the ORC system) and steam (in the RC system) as working fluids.


Author(s):  
Alberto Tama Franco

Wind technology is considered to be among the most promising types of renewable energy sources, and due to high oil prices and growing concerns about climate change and energy security, it has been the subject of extensive considerations in recent years, including questions related to the relative sustainability of electricity production when the manufacturing, assembly, transportation and dismantling processes of these facilities are taken into account. The present article evaluates the environmental impacts, carbon emissions and water consumption, derived from the production of electric energy of the Villonaco wind farm, located in Loja-Ecuador, during its entire life cycle, using the Life Cycle Analysis method. Finally, it is concluded that wind energy has greater environmental advantages, since it has lower values of carbon and water footprints than other energy sources. Additionally, with the techniques Cumulative Energy Demand and Energy Return on Investment, sustainability in the production of electricity from wind power in Ecuador is demonstrated; and, that due to issues of vulnerability to climate change, the diversification of its energy mix is essential considering the inclusion of non-conventional renewable sources such as solar or wind, this being the only way to reduce both the carbon footprint and the water supply power.


2019 ◽  
Vol 11 (8) ◽  
pp. 2301 ◽  
Author(s):  
Raphaela Pagany ◽  
Anna Marquardt ◽  
Roland Zink

In recent years, with the increased focus on climate protection, electric vehicles (EVs) have become a relevant alternative to conventional motorized vehicles. Even though the market share of EVs is still comparatively low, there are ongoing considerations for integrating EVs in transportation systems. Along with pushing EV sales numbers, the installation of charging infrastructure is necessary. This paper presents a user- and destination-based approach for locating charging stations (CSs) for EVs—the electric charging demand location (ECDL) model. With regard to the daily activities of potential EV users, potential positions for CSs are derived on a micro-location level in public and semipublic spaces using geographic information systems (GIS). Depending on the vehicle users’ dwell times and visiting frequencies at potential points of interest (POIs), the charging demand at such locations is calculated. The model is mainly based on a survey analyzing the average time spent per daily activity, regional data about driver and vehicle ownership numbers, and the georeferenced localization of regularly visited POIs. Optimal sites for parking and charging EVs within the POIs neighborhood are selected based on walking distance calculations, including spatial neighborhood effects, such as the density of POIs. In a case study in southeastern Germany, the model identifies concrete places with the highest overall demand for CSs, resulting in an extensive coverage of the electric energy demand while considering as many destinations within the acceptable walking distance threshold as possible.


2019 ◽  
Vol 84 ◽  
pp. 02002
Author(s):  
Waldemar Dolega

In this paper, an analysis of issues related to development of national electric power network infrastructure in aspect of electric energy security is performed. Profile of network infrastructure in area of transmission and distribution is performed. Threats for electric energy supply security connected with transmission and distribution infrastructure are discussed. Both transmission and distribution electric power network are adapted for presently occurred typical conditions of electric energy demand and realization of internal tasks in normal conditions, but can create potential threat for electric energy supply security. In the context of forecasted increase of electric energy demand, inadequate power in National Electric Power System (NEPS) in domestic sources and available through intersystem connections, uneven location of sources and consumers at shortage of proper network transmission capacities, necessity of improvement of quality and electric energy supply reliability to final consumers and intensive development of renewable energy sources, present network infrastructure in area of transmission and distribution will be insufficient. Development of 400 and 220 kV transmission network, 110 kV distribution network especially in area of cities, MV distribution network especially in rural areas and realization of investments for improvement of export-import possibilities of NEPS will be necessary. Challenges for transmission and distribution system operators in area of network development are performed. They concern mainly investment sphere and area connected with preparation and construction of network investments.


Sign in / Sign up

Export Citation Format

Share Document