Decision Makers’ Opinions Changing Attitude-Driven Consensus Model under Linguistic Environment and Its Application in Dynamic MAGDM Problems

Author(s):  
Bapi Dutta ◽  
Debashree Guha
2020 ◽  
Vol 39 (3) ◽  
pp. 3351-3374
Author(s):  
Peide Liu ◽  
Zeeshan Ali ◽  
Tahir Mahmood

The information measures (IMs) of complex fuzzy information are very useful tools in the areas of machine learning and decision making. In some multi-attribute group decision making (MAGDM) problems, the decision makers can make a decision mostly according to IMs such as similarity measures (SMs), distance measures (DIMs), entropy measures (EMs) and cross-entropy measures (C-EMs) in order to choose the best one. However, the relation between C-EMs and DIMs in the environment of complex fuzzy sets (CFSs) has not been developed and verified. In this manuscript, the notions of DIMs and C-EMs in the environment of CFSs are investigated and the relation between DIMs and EMs in the environment of CFSs is also discussed. The complex fuzzy discrimination measures (CFDMs), the complex fuzzy cross-entropy measures (CFC-EMs), and the symmetry complex fuzzy cross-entropy measures (SCFC-EMs) are proposed. We also examined that the C-EMs satisfied all the conditions of DIMs, and finally proved that C-EMs including CFC-EMs were also a DIMs. In last, we used some practical examples to illustrate the validity and superiority of the proposed method by comparing with other existing methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Liu Qingguo ◽  
Liu Xinxue ◽  
Wu Jian ◽  
Li Yaxiong

Multiattribute group decision-making (MAGDM) problems are characterized by the large number, uneven levels, and bounded rationality of decision-makers; multiple attributes and fuzziness of decision problems; and complex group behaviours. Considering these characteristics, we propose a MAGDM method using a genetic K-means clustering algorithm. First, we briefly review the traditional multiattribute decision-making method based on prospect theory (PT) and trapezoidal intuitionistic fuzzy numbers (TrIFNs) under the premise of human bounded rationality and uncertain decision environment. Then, the aggregation model of decision information given by decision-makers is established using the genetic K-means algorithm in order to determine optimal clustering results. Each clustering center represents decision information given by decision-makers in each cluster, and the weight of each clustering center is determined by considering the tightness of decision information within a cluster and the count of decision-makers in each cluster. Finally, the ranking of schemes is obtained according to the comparison rules of TrIFNs. We design comparison simulation experiments to test the proposed method and the simulation results demonstrate that the proposed method is apprehensible and feasible to solve MAGDM problems.


Author(s):  
Shengbao Yao ◽  
Miao Gu

AbstractThe vast majority of the existing social network-based group decision-making models require extra information such as trust/distrust, influence and so on. However, in practical decision-making process, it is difficult to get additional information apart from opinions of decision makers. For large-scale group decision making (LSGDM) problem in which decision makers articulate their preferences in the form of comparative linguistic expressions, this paper proposes a consensus model based on an influence network which is inferred directly from preference information. First, a modified agglomerative hierarchical clustering algorithm is developed to detect subgroups in LSGDM problem with flexible linguistic information. Meanwhile, a measure method of group consensus level is proposed and the optimal clustering level can be determined. Second, according to the preference information of group members, influence network is constructed by determining intra-cluster and inter-cluster influence relationships. Third, a two-stage feedback mechanism guided by influence network is established for the consensus reaching process, which adopts cluster adjustment strategy and individual adjustment strategy depending on the different levels of group consensus. The proposed mechanism can not only effectively improve the efficiency of consensus reaching of LSGDM, but also take individual preference adjustment into account. Finally, the feasibility and effectiveness of the proposed method are verified by the case of intelligent environmental protection project location decision.


2014 ◽  
Vol 513-517 ◽  
pp. 721-724 ◽  
Author(s):  
Chen Guang Xu ◽  
Dong Xiao Liu ◽  
Min Li

In this paper, we First utilize the induced interval-valued intuitionistic fuzzy hybrid averaging (I-IIFHA) operator to aggregate all individual interval-valued intuitionistic fuzzy decision matrices provided by the decision makers into a collective interval-valued intuitionistic fuzzy decision matrix. Based on the basic ideal of traditional VIKOR method, we establish an optimization model to determine the weights of attributes. Then, calculation steps based on the collective interval-valued intuitionistic fuzzy decision matrix and traditional VIKOR method for solving the MAGDM problems with interval-valued intuitionistic fuzzy assessments and partially known weight information are given. Finally, a numerical example is used to illustrate the applicability of the proposed approach.


2014 ◽  
Vol 513-517 ◽  
pp. 725-728 ◽  
Author(s):  
Chen Guang Xu

In this paper, we investigate the multi-attribute group decision making (MAGDM) problems in which all the information provided by the decision makers is presented as interval-valued intuitionistic fuzzy decision matrices where each of the elements is characterized by interval-valued intuitionistic fuzzy number (IVIFN), and the information about attribute weights is partially known. First, we utilize the induced interval-valued intuitionistic fuzzy hybrid averaging (I-IIFHA) operator to aggregate all individual interval-valued intuitionistic fuzzy decision matrices provided by the decision makers into a collective interval-valued intuitionistic fuzzy decision matrix. Based on the basic ideal of traditional VIKOR method, we establish an optimization model to determine the weights of attributes. Then, calculation steps based on the collective interval-valued intuitionistic fuzzy decision matrix and traditional VIKOR method for solving the MAGDM problems with interval-valued intuitionistic fuzzy assessments and partially known weight information are given. Finally, a numerical example is used to illustrate the applicability of the proposed approach.


2021 ◽  
pp. 1-16
Author(s):  
Ningna Liao ◽  
Hui Gao ◽  
Guiwu Wei ◽  
Xudong Chen

Facing with a sea of fuzzy information, decision makers always feel it difficult to select the optimal alternatives. Probabilistic hesitant fuzzy sets (PHFs) utilize the possible numbers and the possible membership degrees to describe the behavior of the decision makers. though this environment has been introduced to solve problems using different methods, this circumstance can still be explored by using different method. This paper’ s aim is to develop the MABAC (Multi-Attributive Border Approximation area Comparison) decision-making method which based on cumulative prospect theory (CPT) in probabilistic hesitant fuzzy environment to handle multiple attributes group decision making (MAGDM) problems. Then the weighting vector of attributes can be calculated by the method of entropy. Then, in order to show the applicability of the proposed method, it is validated by a case study for buying a house. Finally, through comparing the outcome of comparative analysis, we conclude that this designed method is acceptable.


2021 ◽  
pp. 1-15
Author(s):  
Lu Xiao ◽  
Guiwu Wei ◽  
Yanfeng Guo ◽  
Xudong Chen

Interval-valued intuitionistic fuzzy set (IVIFS) is a flexible method to deal with uncertainty and fuzziness. For the past few years, extensive researches about the multi-attribute group decision making (MAGDM) problems based on IVIFSs has been extensively studied in many fields. In this study, the Taxonomy method based on IVIFSs (IVIF-Taxonomy) was proposed for MAGDM problems. For the sake of the objectivity of attribute weight, entropy is introduced into the proposed model. The IVIF-Taxonomy method fully considers the weight of the decision makers (DMs) and the homogeneity of the chosen alternatives, making it more realistic. In addition, we apply IVIF-Taxonomy method to fund selection to verify the validity of IVIF-Taxonomy method. Finally, the trustworthy of IVIF-Taxonomy method is proved by comparing with the aggregate operator, IVIF-TOPSIS method, IVIF-GRA method and modified IVIF-WASPAS method.


Kybernetes ◽  
2019 ◽  
Vol 48 (9) ◽  
pp. 2030-2064
Author(s):  
Xiaoyue Liu ◽  
Xiaolu Wang ◽  
Li Zhang ◽  
Qinghua Zeng

PurposeWith respect to multiple attribute group decision-making (MAGDM) in which the assessment values of alternatives are denoted by normal discrete fuzzy variables (NDFVs) and the weight information of attributes is incompletely known, this paper aims to develop a novel fuzzy stochastic MAGDM method based on credibility theory and fuzzy stochastic dominance, and then applies the proposed method for selecting the most desirable investment alternative under uncertain environment.Design/methodology/approachFirst, by aggregating the membership degrees of an alternative to a scale provided by all decision-makers into a triangular fuzzy number, the credibility degree and expect the value of a triangular fuzzy number are calculated to construct the group fuzzy stochastic decision matrix. Second, based on determining the credibility distribution functions of NDFVs, the fuzzy stochastic dominance relations between alternatives on each attribute are obtained and the fuzzy stochastic dominance degree matrices are constructed by calculating the dominance degrees that one alternative dominates another on each attribute. Subsequently, calculating the overall fuzzy stochastic dominance degrees of an alternative on each attribute, a single objective non-linear optimization model is established to determine the weights of attributes by maximizing the relative closeness coefficients of all alternatives to positive ideal solution. If the information about attribute weights is completely unknown, the idea of maximizing deviation is used to determine the weights of attributes. Finally, the ranking order of alternatives is determined according to the descending order of corresponding relative closeness coefficients and the best alternative is determined.FindingsThis paper proposes a novel fuzzy stochastic MAGDM method based on credibility theory and fuzzy stochastic dominance, and a case study of investment alternative selection problem is provided to illustrate the applicability and sensitivity of the proposed method and its effectiveness is demonstrated by comparison analysis with the proposed method with the existing fuzzy stochastic MAGDM method. The result shows that the proposed method is useful to solve the MAGDM problems in which the assessment values of alternatives are denoted by NDFVs and the weight information of attributes is incompletely known.Originality/valueThe contributions of this paper are that to describe the dominance relations between fuzzy variables reasonably and quantitatively, the fuzzy stochastic dominance relations between any two fuzzy variables are redefined and the concept of fuzzy stochastic dominance degree is proposed to measure the dominance degree that one fuzzy variable dominate another; Based on credibility theory and fuzzy stochastic dominance, a novel fuzzy stochastic MAGDM method is proposed to solve MAGDM problems in which the assessment values of alternatives are denoted by NDFVs and the weight information of attributes is incompletely known. The proposed method has a clear logic, which not only can enrich and develop the theories and methods of MAGDM but also provides decision-makers a novel method for solving fuzzy stochastic MAGDM problems.


2015 ◽  
Vol 21 (1) ◽  
pp. 28-47 ◽  
Author(s):  
Jian WU

The aim of this article is to investigate an approach to multiple attribute group decision making (MAGDM) problems in which the information about decision makers (DMs) weights is completely unknown in advance, the attributes are inter-dependent, and the attribute values take the form of intuitionistic trapezoidal fuzzy numbers. First, the concept of similarity degree (SD) for two intuitionistic trapezoidal fuzzy decision matrixes is defined, which measures the level of consensus between individual decision opinion and group decision opinion. Next, we develop some IITFOWA operators to aggregate intuitionistic trapezoidal fuzzy decision matrixes in MAGDM problems. In particular, we present the SD induced IITFOWA (SD-IITFOWA) operator, which induces the order of argument values by utilizing the similarity degree of decision makers. This operator aggregates individual opinion in such a way that more importance is placed on the most similarity one. Then, a SD-IITFOWA operator and TOPSIS method based approach is developed to solve the MAGDM problems with intuitionistic trapezoidal fuzzy numbers. Finally, the developed approach is used to select the right suppliers for a computer company.


2011 ◽  
Vol 81 (4) ◽  
pp. 256-263 ◽  
Author(s):  
Christophe Matthys ◽  
Pieter van ‘t Veer ◽  
Lisette de Groot ◽  
Lee Hooper ◽  
Adriënne E.J.M. Cavelaars ◽  
...  

In Europe, micronutrient dietary reference values have been established by (inter)national committees of experts and are used by public health policy decision-makers to monitor and assess the adequacy of diets within population groups. The approaches used to derive dietary reference values (including average requirements) vary considerably across countries, and so far no evidence-based reason has been identified for this variation. Nutrient requirements are traditionally based on the minimum amount of a nutrient needed by an individual to avoid deficiency, and is defined by the body’s physiological needs. Alternatively the requirement can be defined as the intake at which health is optimal, including the prevention of chronic diet-related diseases. Both approaches are confronted with many challenges (e. g., bioavailability, inter and intra-individual variability). EURRECA has derived a transparent approach for the quantitative integration of evidence on Intake-Status-Health associations and/or Factorial approach (including bioavailability) estimates. To facilitate the derivation of dietary reference values, EURopean micronutrient RECommendations Aligned (EURRECA) is developing a process flow chart to guide nutrient requirement-setting bodies through the process of setting dietary reference values, which aims to facilitate the scientific alignment of deriving these values.


Sign in / Sign up

Export Citation Format

Share Document