Data Graph Formulation as the Minimum-Weight Maximum-Entropy Problem

Author(s):  
Samuel de Sousa ◽  
Walter G. Kropatsch
1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.


1986 ◽  
Vol 47 (C5) ◽  
pp. C5-55-C5-62
Author(s):  
M. S. LEHMANN ◽  
T. E. ROBINSON ◽  
S. W. WILKINS

1988 ◽  
Vol 60 (02) ◽  
pp. 188-192 ◽  
Author(s):  
F A Ofosu ◽  
F Fernandez ◽  
N Anvari ◽  
C Caranobe ◽  
F Dol ◽  
...  

SummaryA recent study (Fernandez et al., Thromb. Haemostas. 1987; 57: 286-93) demonstrated that when rabbits were injected with the minimum weight of a variety of glycosaminoglycans required to inhibit tissue factor-induced thrombus formation by —80%, exogenous thrombin was inactivated —twice as fast in the post-treatment plasmas as the pre-treatment plasmas. In this study, we investigated the relationship between inhibition of thrombus formation and the extent of thrombin inhibition ex vivo. We also investigated the relationship between inhibition of thrombus formation and inhibition of prothrombin activation ex vivo. Four sulfated polysaccharides (SPS) which influence coagulation in a variety of ways were used in this study. Unfractionated heparin and the fraction of heparin with high affinity to antithrombin III potentiate the antiproteinase activity of antithrombin III. Pentosan polysulfate potentiates the activity of heparin cofactor II. At less than 10 pg/ml of plasma, all three SPS also inhibit intrinsic prothrombin activation. The fourth agent, dermatan sulfate, potentiates the activity of heparin cofactor II but fails to inhibit intrinsic prothrombin activation even at concentrations which exceed 60 pg/ml of plasma. Inhibition of thrombus formation by each sulfated polysaccharides was linearly related to the extent of thrombin inhibition achieved ex vivo. These observations confirm the utility of catalysis of thrombin inhibition as an index for assessing antithrombotic potential of glycosaminoglycans and other sulfated polysaccharides in rabbits. With the exception of pentosan polysulfate, there was no clear relationship between inhibition of thrombus formation and inhibition of prothrombin activation ex vivo.


Sign in / Sign up

Export Citation Format

Share Document