Efficient Dynamic Pricing Scheme for Effective Bandwidth Utilization in Mobile WIMAX IEEE802.16e

Author(s):  
Kafilu Barau Danbatta ◽  
Umar Garba Danbatta
Author(s):  
El-Bahlul Fgee ◽  
Shyamala Sivakumar ◽  
William J. Phillips ◽  
William Robertson

Network multimedia applications constitute a large part of Internet traffic and guaranteed delivery of such traffic is a challenge because of their sensitivity to delay, packet loss and higher bandwidth requirement. The need for guaranteed traffic delivery is exacerbated by the increasing delay experienced by traffic propagating through more than one QoS domain. Hence, there is a need for a flexible and a scalable QoS manager that handles and manages the needs of traffic flows throughout multiple IPv6 domains. The IPv6 QoS manager, presented in this paper, uses a combination of the packets’ flow ID and the source address (Domain Global Identifier (DGI)), to process and reserve resources inside an IPv6 domain. To ensure inter-domain QoS management, the QoS domain manager should also communicate with other QoS domains’ managers to ensure that traffic flows are guaranteed delivery. In this scheme, the IPv6 QoS manager handles QoS requests by either processing them locally if the intended destination is located locally or forwards the request to the neighboring domain’s QoS manager. End-to-end QoS is achieved with an integrated admission and management unit. The feasibility of the proposed QoS management scheme is illustrated for both intra- and inter-domain QoS management. The scalability of the QoS management scheme for inter-domain scenarios is illustrated with simulations for traffic flows propagating through two and three domains. Excellent average end-to-end delay results have been achieved when traffic flow propagates through more than one domain. Simulations show that packets belonging to non-conformant flows experience increased delay, and such packets are degraded to lower priority if they exceed their negotiated traffic flow rates. Many pricing schemes have been proposed for QoS-enabled networks. However, integrated pricing and admission control has not been studied in detail. A dynamic pricing model is integrated with the IPv6 QoS manager to study the effects of increasing traffic flows rates on the increased cost of delivering high priority traffic flows. The pricing agent assigns prices dynamically for each traffic flow accepted by the domain manager. Combining the pricing strategy with the QoS manager allows only higher priority traffic packets that are willing to pay more to be processed during congestion. This approach is flexible and scalable as end-to-end pricing is decoupled from packet forwarding and resource reservation decisions. Simulations show that additional revenue is generated as prices change dynamically according to the network congestion status.


2019 ◽  
Vol 63 (6) ◽  
pp. 832-843
Author(s):  
Muthumanikandan Vanamoorthy ◽  
Valliyammai Chinnaiah

Abstract Software-defined networking (SDN) is an emerging trend where the control plane and the data plane are separated from each other, culminating in effective bandwidth utilization. This separation also allows multi-vendor interoperability. Link failure is a major problem in networking and must be detected as soon as possible because when a link fails the path becomes congested and packet loss occurs, delaying the delivery of packets to the destination. Backup paths must be configured immediately when a failure is detected in the network to speed up packet delivery, avoid congestion and packet loss and provide faster convergence. Various SDN segment protection algorithms that efficiently reduce CPU cycles and flow table entries exist, but each has drawbacks. An independent transient plane technique can be used to reduce packet loss but is not as efficient when multiple flows try to share the same link. The proposed work focuses on reducing congestion, providing faster convergence with minimal packet loss and effectively utilizing link bandwidth using bandwidth-sharing techniques. An analysis and related studies show that this method performs better and offers a more reliable network without loss, while simultaneously ensuring the swift delivery of data packets toward the destination without congestion, compared to the other existing schemes.


Author(s):  
SHAIK MOHAMMED GOUSE ◽  
G. PRAKASH BABU

Cloud applications that offer data management services are emerging. Such clouds support caching of data in order to provide quality query services. The users can query the cloud data, paying the price for the infrastructure they use. Cloud management necessitates an economy that manages the service of multiple users in an efficient, but also, resource economic way that allows for cloud profit. Naturally, the maximization of cloud profit given some guarantees for user satisfaction presumes an appropriate price-demand model that enables optimal pricing of query services. The model should be plausible in that it reflects the correlation of cache structures involved in the queries. Optimal pricing is achieved based on a dynamic pricing scheme that adapts to time changes. This paper proposes a novel price-demand model designed for a cloud cache and a dynamic pricing scheme for queries executed in the cloud cache. The pricing solution employs a novel method that estimates the correlations of the cache services in an time-efficient manner. The experimental study shows the efficiency of the solution.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4839
Author(s):  
Diego B. Vilar ◽  
Carolina M. Affonso

This paper proposes a novel dynamic pricing scheme for demand response with individualized tariffs by consumption profile, aiming to benefit both customers and utility. The proposed method is based on the genetic algorithm, and a novel operator called mutagenic agent is proposed to improve algorithm performance. The demand response model is set by using price elasticity theory, and simulations are conducted based on elasticity, demand, and photovoltaic generation data from Brazil. Results are evaluated considering the integration effects of renewable energy sources and compared with other two pricing strategies currently adopted by Brazilian utilities: flat tariff and time-of-use tariff. Simulation results show the proposed dynamic tariff brings benefits to both utilities and consumers. It reduces the peak load and average cost of electricity and increases utility profit and load factor without the undesirable rebound effect.


2013 ◽  
Vol 4 (1) ◽  
pp. 43-55 ◽  
Author(s):  
Hoai Son Nguyen ◽  
Ngoc Anh Nguyen ◽  
Huong Bui Thi Lan

In recent years, there has been considerable interest in applying Distributed Hash Tables (DHTs) to application-level multicast since DHTs have many advantages that are good for multicast applications: decentralization, scalability, fault tolerance, load balancing, and good routing performances. However, an effective bandwidth utilization method is required for DHT-based multicast systems because of a number of technical issues such as heterogeneous node capacity and dynamic membership. In this paper, the authors propose their BAM-Chord (i.e., Bandwidth Adaptive Multicast over Chord), a DHT-based multicast system that focuses on host heterogeneity, network scalability and effective bandwidth utilization. In the authors’ system, when a node joins into the system, it will find out an appropriate position (i.e., node identifier) on a BAM-Chord ring and create links to neighbor nodes based on node’s bandwidth capacity such that the multicast tree can be built efficiently and balanced. Therefore, their system can utilize bandwidth of every node efficiently to reduce the depth of the multicast tree, increase network scalability and take advantages of DHTs in maintaining the multicast tree.


Sign in / Sign up

Export Citation Format

Share Document