Radiation Risk from Medical Exposure in Children

Author(s):  
Michael Lassmann ◽  
Uta Eberlein
2020 ◽  
Vol 3 ◽  
pp. 36-39
Author(s):  
Samson O. Paulinus ◽  
Benjamin E. Udoh ◽  
Bassey E. Archibong ◽  
Akpama E. Egong ◽  
Akwa E. Erim ◽  
...  

Objective: Physicians who often request for computed tomography (CT) scan examinations are expected to have sound knowledge of radiation exposure (risks) to patients in line with the basic radiation protection principles according to the International Commission on Radiological Protection (ICRP), the Protection of Persons Undergoing Medical Exposure or Treatment (POPUMET), and the Ionizing Radiation (Medical Exposure) Regulations (IR(ME)R). The aim is to assess the level of requesting physicians’ knowledge of ionizing radiation from CT scan examinations in two Nigerian tertiary hospitals. Materials and Methods: An 18-item-based questionnaire was distributed to 141 practicing medical doctors, excluding radiologists with work experience from 0 to >16 years in two major teaching hospitals in Nigeria with a return rate of 69%, using a voluntary sampling technique. Results: The results showed that 25% of the respondents identified CT thorax, abdomen, and pelvis examination as having the highest radiation risk, while 22% said that it was a conventional chest X-ray. Furthermore, 14% concluded that CT head had the highest risk while 9% gave their answer to be conventional abdominal X-ray. In addition, 17% inferred that magnetic resonance imaging had the highest radiation risk while 11% had no idea. Furthermore, 25.5% of the respondents have had training on ionizing radiation from CT scan examinations while 74.5% had no training. Majority (90%) of the respondents were not aware of the ICRP guidelines for requesting investigations with very little (<3%) or no knowledge (0%) on the POPUMET and the IR(ME)R respectively. Conclusion: There is low level of knowledge of ionizing radiation from CT scan examinations among requesting physicians in the study locations.


2020 ◽  
Vol 13 (1) ◽  
pp. 94-101
Author(s):  
V. A. Sakovich

Peculiarity of various methodology aspects for estimate radiation risk in dependence of using area are discussed in this article; perspective of the estimate perfection is discussed too. It is consideration such area of using as medico-biology, epidemiology, radiation protection, medical exposure. The opinion expressed that it is difficult to insert subjectively-psychological perception of risk in the methodology. It is generalized systematically author’s methodological judgement, which been published before. The article contain discussion moment, which is inevitable in given theme.


1982 ◽  
Vol 21 (03) ◽  
pp. 85-91 ◽  
Author(s):  
R. Poppitz

Um die Strahlenexposition und das Strahlenrisiko für die Bevölkerung durch die nuklearmedizinische Diagnostik in Bulgarien zu ermitteln, wurde eine Erhebung für das Jahr 1980 über die Arten und Anzahl der Applikationen von Radiopharmaka, über die verwendeten Aktivitäten und über die Geschlechts- und Altersverteilung der untersuchten Patienten durchgeführt. Die Gesamtzahl diagnostischer in vivo Applikationen betrug 116418 (davon 40,5% bei Männern und 59,5% bei Frauen), d.h. 13,1 Applikationen per 1000 Einwohner. Die applizierte Gesamtaktivität aller 44 verwendeter Radiopharmaka betrug ca. 2,1 TBq (56 Ci). Die Geschlechts- und Altersverteilung der untersuchten Patienten war ähnlich jener in anderen Ländern: nur 17,4% aller Patienten waren im reproduktionsfähigen Alter, 52,7% waren über 45 Jahre alt. Im Vergleich zu anderen entwickelten Ländern war in Bulgarien im Jahr 1980 der Anteil der 131J-Jodid-Untersuchungen verhältnismäßig hoch.


1984 ◽  
Vol 23 (02) ◽  
pp. 87-91 ◽  
Author(s):  
K. Flemming

SummaryIn the beginning of medical radiology, only the benefit of ionizing radiation was obvious, and radiation was handled and applied generously. After late effects had become known, the radiation exposure was reduced to doses following which no such effects were found. Thus, it was assumed that one could obtain an optimal medical benefit without inducing any hazard. Later, due to experimental findings, hypotheses arose (linear dose-effect response, no time factor) which led to the opinion that even low and lowest radiation doses were relevant for the induction of late effects. A radiation fear grew, which was unintentionally strengthened by radiation protection decrees: even for low doses a radiation risk could be calculated. Therefore, it was believed that there could still exist a radiation hazard, and the radiation benefit remained in question. If, however, all presently known facts are considered, one must conclude that large radiation doses are hazardous and low doses are inefficient, whereas lowest doses have a biopositive effect. Ionizing radiation, therefore, may cause both, hazard as well as benefit. Which of the two effects prevails is determined by the level of dose.


2020 ◽  
Vol 2020 (2) ◽  
pp. 50-56
Author(s):  
Mariya Berberova ◽  
Vladislav Chuenko ◽  
Oleg Zolotarev ◽  
Olga Trefilova ◽  
Maksim Grudev ◽  
...  

Nuclear power plants (NPP), being complex technological systems, represent a source of increased risk, in particular, a specific risk of radiation exposure. Obtaining quantitative assessments of radiation risk is critical for risk reduction and accident prevention. Existing methods for assessing radiation risk do not take into account the influence of external factors, such as population composition, geographical features, anthropogenic environmental changes, etc.[1]. Since 1997, in connection with changes in the norms and rules in the field of the use of atomic energy, it became necessary to perform a probabilistic safety analysis (PSA) at all nuclear power plants in Russia. Subsequently, a standard safety data sheet for a hazardous facility was developed. To fill out the second section of the safety data sheet, it is necessary to carry out a risk assessment of the objects in question. From this moment on, risk assessments were performed for all power units of all operating nuclear power plants in Russia. Today, in our country there are 14 nuclear power plants. On average, there are 3 power units per nuclear power plant. In order to systematize and centralize data on NPP risk assessments, it became necessary to develop a program for monitoring NPP safety. The aim of the work is to develop a monitoring (control) program for ensuring the safety of nuclear power plants, using modern technologies to systematize and group data on nuclear safety data sheets, as well as organize quick access to information.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Pantke ◽  
Florian Mueller ◽  
Sebastian Reinartz ◽  
Fabian Kiessling ◽  
Volkmar Schulz

AbstractChanges in blood flow velocity play a crucial role during pathogenesis and progression of cardiovascular diseases. Imaging techniques capable of assessing flow velocities are clinically applied but are often not accurate, quantitative, and reliable enough to assess fine changes indicating the early onset of diseases and their conversion into a symptomatic stage. Magnetic particle imaging (MPI) promises to overcome these limitations. Existing MPI-based techniques perform velocity estimation on the reconstructed images, which restricts the measurable velocity range. Therefore, we developed a novel velocity quantification method by adapting the Doppler principle to MPI. Our method exploits the velocity-dependent frequency shift caused by a tracer motion-induced modulation of the emitted signal. The fundamental theory of our method is deduced and validated by simulations and measurements of moving phantoms. Overall, our method enables robust velocity quantification within milliseconds, with high accuracy, no radiation risk, no depth-dependency, and extended range compared to existing MPI-based velocity quantification techniques, highlighting the potential of our method as future medical application.


Author(s):  
Elizabeth Vogel ◽  
Thomas Leaver ◽  
Fiona Wall ◽  
Ben Johnson ◽  
Michael Uglow ◽  
...  

Abstract Objective There are no data on the effect of X-Ray irradiation to the vulnerable pelvic organs of babies during DDH follow-up. This study aims to calculate, for the first time, the radiation exposure to infants during follow-up for DDH harness treatment, and thus quantify the lifetime risk of malignancy. Methods Patients who had completed 5 years’ follow-up following successful Pavlik harness treatment were identified from the hospital DDH database. The radiation dose was extracted from the Computerised Radiology Information System database for every radiograph of every patient. The effective dose (ED) was calculated using conversion coefficients for age, sex and body region irradiated. Cumulative ED was compared to Health Protection Agency standards to calculate lifetime risk of malignancy from the radiographs. Results All radiographs of 40 infants, successfully treated in Pavlik harness for DDH, were assessed. The mean number of AP pelvis radiographs was 7.00 (range: 6–9, mode: 7). The mean cumulative ED was 0.25 mSv (Range: 0.11–0.46, SD: 0.07). This is far lower than the annual ‘safe’ limit for healthcare workers of 20 mSv and is categorised as “Very Low Risk”. Conclusion Clinicians involved in the treatment DDH can be re-assured that the cumulative radiation exposure from pelvic radiographs following Pavlik harness treatment is “Very Low Risk”. Whilst being mindful of any radiation exposure in children, this study provides a scientific answer that help addresses parental concerns.


Sign in / Sign up

Export Citation Format

Share Document