Structural Order in Heusler Compounds

Author(s):  
S. Wurmehl ◽  
M. Wójcik
SPIN ◽  
2014 ◽  
Vol 04 (04) ◽  
pp. 1440019 ◽  
Author(s):  
SABINE WURMEHL ◽  
JÜRGEN T. KOHLHEPP

Heusler compounds exhibit different electronic ground states and functionalities, making them attractive materials for studies of their fundamental properties and for their technological exploitation. The high spin polarization, predicted in particular for Co 2-based Heusler compounds, renders them prime candidates for electrode materials in spintronic devices such as giant magnetoresistance (GMR) elements or magnetic tunnel junctions and requires their implementation in thin film stacks. The growth of high quality Heusler films, however, demands their careful characterization. Typical issues in Heusler thin films are, besides the type and degree of structural order, the control of the film composition and the conservation of smooth interfaces between different layers in the film, e.g., between the Heusler layer and the tunneling barrier, while at the same time enabling high structural order. This review illustrates how nuclear magnetic resonance spectroscopy contributes to those issues by discussing recent examples of nuclear magnetic resonance studies of Heusler thin films.


Author(s):  
P.E. Champness ◽  
R.W. Devenish

It has long been recognised that silicates can suffer extensive beam damage in electron-beam instruments. The predominant damage mechanism is radiolysis. For instance, damage in quartz, SiO2, results in loss of structural order without mass loss whereas feldspars (framework silicates containing Ca, Na, K) suffer loss of structural order with accompanying mass loss. In the latter case, the alkali ions, particularly Na, are found to migrate away from the area of the beam. The aim of the present study was to investigate the loss of various elements from the common silicate structures during electron irradiation at 100 kV over a range of current densities of 104 - 109 A m−2. (The current density is defined in terms of 50% of total current in the FWHM probe). The silicates so far ivestigated are:- olivine [(Mg, Fe)SiO4], a structure that has isolated Si-O tetrahedra, garnet [(Mg, Ca, Fe)3Al2Si3AO12 another silicate with isolated tetrahedra, pyroxene [-Ca(Mg, Fe)Si2O6 a single-chain silicate; mica [margarite, -Ca2Al4Si4Al4O2O(OH)4], a sheet silicate, and plagioclase feldspar [-NaCaAl3Si5O16]. Ion- thinned samples of each mineral were examined in a VG Microscopes UHV HB501 field- emission STEM. The beam current used was typically - 0.5 nA and the current density was varied by defocussing the electron probe. Energy-dispersive X-ray spectra were collected every 10 seconds for a total of 200 seconds using a Link Systems windowless detector. The thickness of the samples in the area of analysis was normally 50-150 nm.


2021 ◽  
Author(s):  
Fabian Garmroudi ◽  
Michael Parzer ◽  
Alexander Riss ◽  
Nikolas Reumann ◽  
Bernhard Hinterleitner ◽  
...  

2021 ◽  
Vol 103 (8) ◽  
Author(s):  
F. Garmroudi ◽  
A. Riss ◽  
M. Parzer ◽  
N. Reumann ◽  
H. Müller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document