Balancing Tree Size and Accuracy in Fast Mining of Uncertain Frequent Patterns

Author(s):  
Carson Kai-Sang Leung ◽  
Richard Kyle MacKinnon
Keyword(s):  
Author(s):  
EL-Mehdi Ali ◽  
Yan-Lin He ◽  
QunXiong Zhu
Keyword(s):  

2010 ◽  
Vol 36 (5) ◽  
pp. 674-684 ◽  
Author(s):  
Feng WU ◽  
Yan ZHONG ◽  
Quan-Yuan WU

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553d-553
Author(s):  
C.R. Unrath

Historically, most airblast chemical applications to apple orchards used a single “average” water volume, resulting in variability of coverage with tree size and also the greatest variable in chemical thinning. This coverage variability can be eliminated by properly quantifying the tree canopy, as tree row volume (TRV), and relating that volume to airblast water rate for adequate coverge. Maximum typical tree height, cross-row limb spread, and between-row spacing are used to quantify the TRV. Further refinement is achieved by adjusting the water volume for tree canopy density. The North Carolina TRV model allows a density adjustment from 0.7 gal/1000 ft3 of TRV for young, very open tree canopies to 1.0 gal/1000 ft3 of TRV for large, thick tree canopies to deliver a full dilute application for maximum water application (to the point of run-off). Most dilute pesticide applications use 70% of full dilute to approach the point of drip (pesticide dilute) to not waste chemicals and reduce non-target environmental exposure. From the “chemical load” (i.e., lb/acre) calculated for the pesticide dilute application, the proper chemical load for lower (concentrate) water volumes can be accurately determined. Another significant source of variability is thinner application response is spray distribution to various areas of the tree. This variability is related to tree configuration, light, levels, fruit set, and natural thinning vs. the need for chemical thinning. Required water delivery patterns are a function of tree size, form, spacing, and density, as well as sprayer design (no. of nozzles and fan size). The TRV model, density adjustments, and nozzle patterns to effectively hit the target for uniform crop load will be addressed.


2009 ◽  
Vol 25 (2) ◽  
pp. 107-121 ◽  
Author(s):  
Jan H. D. Wolf ◽  
S. Robbert Gradstein ◽  
Nalini M. Nadkarni

Abstract:The sampling of epiphytes is fraught with methodological difficulties. We present a protocol to sample and analyse vascular epiphyte richness and abundance in forests of different structure (SVERA). Epiphyte abundance is estimated as biomass by recording the number of plant components in a range of size cohorts. Epiphyte species biomass is estimated on 35 sample-trees, evenly distributed over six trunk diameter-size cohorts (10 trees with dbh > 30 cm). Tree height, dbh and number of forks (diameter > 5 cm) yield a dimensionless estimate of the size of the tree. Epiphyte dry weight and species richness between forests is compared with ANCOVA that controls for tree size. SChao1 is used as an estimate of the total number of species at the sites. The relative dependence of the distribution of the epiphyte communities on environmental and spatial variables may be assessed using multivariate analysis and Mantel test. In a case study, we compared epiphyte vegetation of six Mexican oak forests and one Colombian oak forest at similar elevation. We found a strongly significant positive correlation between tree size and epiphyte richness or biomass at all sites. In forests with a higher diversity of host trees, more trees must be sampled. Epiphyte biomass at the Colombian site was lower than in any of the Mexican sites; without correction for tree size no significant differences in terms of epiphyte biomass could be detected. The occurrence of spatial dependence, at both the landscape level and at the tree level, shows that the inclusion of spatial descriptors in SVERA is justified.


2021 ◽  
pp. 1-36
Author(s):  
Carol A. Rolando ◽  
Brian Richardson ◽  
Thomas S.H. Paul ◽  
Chanatda Somchit

Abstract Exotic conifers are rapidly spreading in many regions of New Zealand, as well as in many other countries, with detrimental impacts on both natural ecosystems and some productive sector environments. Herbicides, in particular the active ingredient (a.i.) triclopyr, are an important tool to manage invasive conifers, yet there is a paucity of information that quantifies the amount of herbicide required to kill trees of different sizes when applied as a basal bark treatment. Two sequential experiments were conducted to define the amount of triclopyr required to kill individual invasive Pinus contorta trees of different sizes when applied in a methylated seed oil to bark (either the whole stem or base of the tree) and to determine which tree size variates (height (HT), diameter at breast height (DBH), crown diameter (CD)), or derived attributes (crown area, crown volume index) best characterised this dose-response relationship. The outcomes of the dose-response research were compared to field operations where triclopyr was applied to the bark of trees from an aerial platform. Applying the herbicide to the whole stem, as opposed to the base of the tree only, significantly increased treatment efficacy. The tree size variates DBH, CD, crown area and crown volume index all provided good fits to the tree mortality data, with >91% prediction accuracy. Of these variates, crown diameter provided the most practical measure of tree size for ease of in-field calculation of dose by an operator. Herbicide rates used in field operations were 7 to 8 times higher than lethal doses calculated from experimental data. Our results highlight the potential for substantial reductions in herbicide rates for exotic conifer control, especially if dose-response data are combined with remotely sensed quantitative measurements of canopy area or volume using new precision technologies such as unmanned aerial vehicles.


2021 ◽  
Vol 13 (1) ◽  
pp. 131
Author(s):  
Franziska Taubert ◽  
Rico Fischer ◽  
Nikolai Knapp ◽  
Andreas Huth

Remote sensing is an important tool to monitor forests to rapidly detect changes due to global change and other threats. Here, we present a novel methodology to infer the tree size distribution from light detection and ranging (lidar) measurements. Our approach is based on a theoretical leaf–tree matrix derived from allometric relations of trees. Using the leaf–tree matrix, we compute the tree size distribution that fit to the observed leaf area density profile via lidar. To validate our approach, we analyzed the stem diameter distribution of a tropical forest in Panama and compared lidar-derived data with data from forest inventories at different spatial scales (0.04 ha to 50 ha). Our estimates had a high accuracy at scales above 1 ha (1 ha: root mean square error (RMSE) 67.6 trees ha−1/normalized RMSE 18.8%/R² 0.76; 50 ha: 22.8 trees ha−1/6.2%/0.89). Estimates for smaller scales (1-ha to 0.04-ha) were reliably for forests with low height, dense canopy or low tree height heterogeneity. Estimates for the basal area were accurate at the 1-ha scale (RMSE 4.7 tree ha−1, bias 0.8 m² ha−1) but less accurate at smaller scales. Our methodology, further tested at additional sites, provides a useful approach to determine the tree size distribution of forests by integrating information on tree allometries.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ana Aguirre ◽  
Miren del Río ◽  
Ricardo Ruiz-Peinado ◽  
Sonia Condés

Abstract Background National and international institutions periodically demand information on forest indicators that are used for global reporting. Among other aspects, the carbon accumulated in the biomass of forest species must be reported. For this purpose, one of the main sources of data is the National Forest Inventory (NFI), which together with statistical empirical approaches and updating procedures can even allow annual estimates of the requested indicators. Methods Stand level biomass models, relating the dry weight of the biomass with the stand volume were developed for the five main pine species in the Iberian Peninsula (Pinus sylvestris, Pinus pinea, Pinus halepensis, Pinus nigra and Pinus pinaster). The dependence of the model on aridity and/or mean tree size was explored, as well as the importance of including the stand form factor to correct model bias. Furthermore, the capability of the models to estimate forest carbon stocks, updated for a given year, was also analysed. Results The strong relationship between stand dry weight biomass and stand volume was modulated by the mean tree size, although the effect varied among the five pine species. Site humidity, measured using the Martonne aridity index, increased the biomass for a given volume in the cases of Pinus sylvestris, Pinus halepensis and Pinus nigra. Models that consider both mean tree size and stand form factor were more accurate and less biased than those that do not. The models developed allow carbon stocks in the main Iberian Peninsula pine forests to be estimated at stand level with biases of less than 0.2 Mg∙ha− 1. Conclusions The results of this study reveal the importance of considering variables related with environmental conditions and stand structure when developing stand dry weight biomass models. The described methodology together with the models developed provide a precise tool that can be used for quantifying biomass and carbon stored in the Spanish pine forests in specific years when no field data are available.


Sign in / Sign up

Export Citation Format

Share Document