scholarly journals A protocol for sampling vascular epiphyte richness and abundance

2009 ◽  
Vol 25 (2) ◽  
pp. 107-121 ◽  
Author(s):  
Jan H. D. Wolf ◽  
S. Robbert Gradstein ◽  
Nalini M. Nadkarni

Abstract:The sampling of epiphytes is fraught with methodological difficulties. We present a protocol to sample and analyse vascular epiphyte richness and abundance in forests of different structure (SVERA). Epiphyte abundance is estimated as biomass by recording the number of plant components in a range of size cohorts. Epiphyte species biomass is estimated on 35 sample-trees, evenly distributed over six trunk diameter-size cohorts (10 trees with dbh > 30 cm). Tree height, dbh and number of forks (diameter > 5 cm) yield a dimensionless estimate of the size of the tree. Epiphyte dry weight and species richness between forests is compared with ANCOVA that controls for tree size. SChao1 is used as an estimate of the total number of species at the sites. The relative dependence of the distribution of the epiphyte communities on environmental and spatial variables may be assessed using multivariate analysis and Mantel test. In a case study, we compared epiphyte vegetation of six Mexican oak forests and one Colombian oak forest at similar elevation. We found a strongly significant positive correlation between tree size and epiphyte richness or biomass at all sites. In forests with a higher diversity of host trees, more trees must be sampled. Epiphyte biomass at the Colombian site was lower than in any of the Mexican sites; without correction for tree size no significant differences in terms of epiphyte biomass could be detected. The occurrence of spatial dependence, at both the landscape level and at the tree level, shows that the inclusion of spatial descriptors in SVERA is justified.

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1003
Author(s):  
Marie-Odile Jordan ◽  
Bruno Hucbourg ◽  
Aurore Drevet

Peach orchards are intensively sprayed crops, and alternative methods must be found to replace pesticides. We intend here to evaluate if limiting water and nitrogen (N) supply could be effective in controlling aphid infestation in commercial orchards. N and water supply were therefore either unrestricted or restricted by 30% only for water, or for both water and N, in 2018 and 2019 on trees of two contrasting varieties. Natural infestations (green peach aphid, mealy plum aphid, leaf curl aphid) were monitored regularly at tree and shoot level. Infested and control shoots were compared for their development during the infestation period, their apex concentrations of total N, amino acids, non-structural carbohydrates, and polyphenols at infestation peak. At tree level, limiting both water and N supplies decreased the proportion of infested shoots by 30%, and the number of trees hosting the most harmful specie by 20 to 50%. Limiting only N supplies had almost no effect on infestation severity. At shoot level, the apex N concentration of infested shoots was stable (around 3.2% dry weight) and was found to be independent of treatment, variety, and year. The remaining biochemical variables were not affected by infestation status but by variety and year. Shoot development was only slightly affected by treatment. Aphids colonized the most vigorous shoots, being those with longer apical ramifications in 2018 and higher growth rates in 2019, in comparison with the controls. The differences were, respectively, 40 and 55%. It was concluded that a double restriction in water and N could limit, but not control, aphid infestations in commercial orchards.


2016 ◽  
Vol 23 (3) ◽  
pp. 135-138
Author(s):  
U. Parmar ◽  
Bimal Desai ◽  
J. Chavda ◽  
M. Tandel ◽  
S. Jha

Azadirachta indica A. Juss. is a well known medicinal plant with various therapeutic uses. It cures numbers of human as well as animal ailments and it has been used in our ancient systems of medicine. A present study was laid out at Model Nursery on Medicinal and Aromatic Plants, ACHF, NAU, Navsari (AES Zone III) during the July, 2012 to February, 2013. Seeds were collected from the 4 various geographical locations and 10 places Viz. Central Gujarat 02 (Dahod and Kheda), South Gujarat 04 (Vyara, Netrang, Rajpipla and Navsari), North Gujarat 02 (Palanpur and Modasa) and Saurashtra 02 (Amreli and Junagadh) and each districts treated as separate treatment. An investigation was laid out under the CRD as statistical tool. The seed sources of Amreli district was found best for the tree height (23.47 cm), tree trunk diameter (2.55 m), seed diameter (5.02 mm), seed length (20.53 cm), 100 seed weight (24.49 gm) and azadirachtin content (34.33 %). Similarly, seed source of Kheda district showed better response for fresh weight of seedling (17.80 g), dry weight of seedling (6.31 g), germination percentage (85.55 %), seedling survival percentage (81.55 %), root length (14.53 cm) and collar diameter (0.36 mm). However, seed source of Palanpur district was superior over the other seed sources in context to maximum shoot length (26.16 cm) and number of leaves per seedling (24.87). Hence, it can be concluded that the seeds source from different location were shown better performance in context to various morphological character.


1994 ◽  
Vol 119 (3) ◽  
pp. 452-457 ◽  
Author(s):  
D.A. Devitt ◽  
R.L. Morris ◽  
D.S. Neuman

A 2-year study was conducted to quantify the actual evapotranspiration (ETa) of three woody ornamental trees placed under three different leaching fractions (LFs). Argentine mesquite (Prosopis alba Grisebach), desert willow [Chilopsis linearis (Cav.) Sweet var. linearis], and southern live oak (Quercus virginiana Mill.) (nursery seedling selection) were planted as 3.8-, 18.9-, or 56.8-liter container nursery stock outdoors in 190-liter plastic lysimeters in which weekly hydrologic balances were maintained. Weekly storage changes were measured with a portable hoist-load cell apparatus. Irrigations were applied to maintain LFs of +0.25, 0.00, or -0.25 (theoretical) based on the equation irrigation (I) = ETa/(1 - LF). Tree height, trunk diameter, canopy volume, leaf area index, total leaf area (oak only) and dry weight were monitored during the experiment or measured at final harvest. Average yearly ETa was significantly influenced by planting size (oak and willow, P ≤ 0.001) and leaching fraction imposed (P ≤ 0.001). Multiple regressions accounting for the variability in average yearly ETa were comprised of different growth and water management variables depending on the species. LF, trunk diameter, and canopy volume accounted for 92% (P ≤ 0.001) of the variability in the average yearly ETa of oak. Monthly ETa data were also evaluated, with multiple regressions based on data from nonwater-deficit trees, such that LF could be ignored. In the case of desert willow, monthly potential ET and trunk diameter accounted for 88% (P ≤ 0.001) of the variability in the monthly ETa. Results suggest that irrigators could apply water to arid urban landscapes more efficiently if irrigations were scheduled based on such information.


Author(s):  
U. S. Panday ◽  
N. Shrestha ◽  
S. Maharjan

Abstract. Forest biomass is the sum of above ground living organic material contained in trees which is expressed as dry weight per unit area. Forest biomass acts as substantial terrestrial carbon sinks, they are estimated to absorb 2.7 Petagrams of carbon per year, as such accurate estimation of forest carbon stock is very important. The estimation of biomass is also important because of its application in commercial exploitation as well as in global carbon cycle. Particularly in the latter context, the estimation of the total above-ground biomass (TAGB) with sufficient accuracy is vital in reporting the spatial and temporal state of forest under the United Nations Framework Convention on Climate Change (UNFCCC), Reducing Emissions from Deforestation in Developing Countries (REDD). In this research, tree height, DBH and crown cover were measured using field instruments. Individual ultra-high-resolution UAV images acquired using customized Visible-NIR, were georeferenced and tree crown were extracted using multi-resolution segmentation. A regression equation between field measured biomass and Crown Projection Area (CPA) was developed. The paper presents results from Barandabhar Forest of Chitwan District, Nepal. RMSE of ortho-mosaic was found to be 18 cm. While R2 value of 89% was obtained for relationship between DBH and biomass, that of 61% was attained for relationship between CPA and biomass.


2012 ◽  
Vol 30 (1) ◽  
pp. 8-12
Author(s):  
Donna C. Fare

Plant response to blue, red, gray or black shade cloth was evaluated with willow oak (Quercus phellos L.), Nuttall oak (Quercus nuttallii Palmer, Nuttall) and Summer Red maple (Acer rubrum L. ‘Summer Red’) liners. Light transmitted through the colored shade cloth had no influence on germination of willow oak acorns or height and caliper growth following germination. Tree height, trunk diameter, number of internodes, shoot and root dry weight were generally greater with the species tested when exposed to red or gray shade cloth, but were often similar to plants exposed to blue or black shade. Height increase of willow oak with red shade was similar to plants exposed to blue or gray; however, the average number of internodes was similar with oaks exposed to blue shade and 16% less with oaks exposed to gray shade. Summer Red maples exposed to black, blue or red shade cloth were similar in height, though plants with blue shade had 23% less dry weight. Nuttall oaks exposed to gray shade had the greatest height increase while the plants exposed to red shade had the largest trunk diameter. The growth parameters measured showed some increases with exposure to colored shade, but the morphology of the species tested was not significantly altered to recommend the use of colored shade during production.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553d-553
Author(s):  
C.R. Unrath

Historically, most airblast chemical applications to apple orchards used a single “average” water volume, resulting in variability of coverage with tree size and also the greatest variable in chemical thinning. This coverage variability can be eliminated by properly quantifying the tree canopy, as tree row volume (TRV), and relating that volume to airblast water rate for adequate coverge. Maximum typical tree height, cross-row limb spread, and between-row spacing are used to quantify the TRV. Further refinement is achieved by adjusting the water volume for tree canopy density. The North Carolina TRV model allows a density adjustment from 0.7 gal/1000 ft3 of TRV for young, very open tree canopies to 1.0 gal/1000 ft3 of TRV for large, thick tree canopies to deliver a full dilute application for maximum water application (to the point of run-off). Most dilute pesticide applications use 70% of full dilute to approach the point of drip (pesticide dilute) to not waste chemicals and reduce non-target environmental exposure. From the “chemical load” (i.e., lb/acre) calculated for the pesticide dilute application, the proper chemical load for lower (concentrate) water volumes can be accurately determined. Another significant source of variability is thinner application response is spray distribution to various areas of the tree. This variability is related to tree configuration, light, levels, fruit set, and natural thinning vs. the need for chemical thinning. Required water delivery patterns are a function of tree size, form, spacing, and density, as well as sprayer design (no. of nozzles and fan size). The TRV model, density adjustments, and nozzle patterns to effectively hit the target for uniform crop load will be addressed.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 340
Author(s):  
Ilze Matisone ◽  
Roberts Matisons ◽  
Āris Jansons

The dieback of common ash (Fraxinus excelsior L.) has dramatically decreased the abundance of the species in Europe; however, tolerance of trees varies regionally. The tolerance of trees is considered to be a result of synergy of genetic and environmental factors, suggesting an uneven future potential of populations. This also implies that wide extrapolations would be biased and local information is needed. Survival of ash during 2005–2020, as well as stand- and tree-level variables affecting them was assessed based on four surveys of 15 permanent sampling plots from an eastern Baltic region (Latvia) using an additive model. Although at the beginning of dieback a relatively low mortality rate was observed, it increased during the 2015–2020 period, which was caused by dying of the most tolerant trees, though single trees have survived. In the studied stands, ash has been gradually replaced by other local tree species, though some recruitment of ash was locally observed, implying formation of mixed broadleaved stands with slight ash admixture. The survival of trees was related to tree height and position within a stand (relative height and local density), though the relationships were nonlinear, indicating presence of critical conditions. Regarding temporal changes, survival rapidly dropped during the first 16 years, stabilizing at a relatively low level. Although low recruitment of ash still implies plummeting economic importance of the species, the observed responses of survival, as well as the recruitment, imply potential to locally improve the survival of ash via management (tending), hopefully providing time for natural resistance to develop.


2021 ◽  
Vol 13 (1) ◽  
pp. 131
Author(s):  
Franziska Taubert ◽  
Rico Fischer ◽  
Nikolai Knapp ◽  
Andreas Huth

Remote sensing is an important tool to monitor forests to rapidly detect changes due to global change and other threats. Here, we present a novel methodology to infer the tree size distribution from light detection and ranging (lidar) measurements. Our approach is based on a theoretical leaf–tree matrix derived from allometric relations of trees. Using the leaf–tree matrix, we compute the tree size distribution that fit to the observed leaf area density profile via lidar. To validate our approach, we analyzed the stem diameter distribution of a tropical forest in Panama and compared lidar-derived data with data from forest inventories at different spatial scales (0.04 ha to 50 ha). Our estimates had a high accuracy at scales above 1 ha (1 ha: root mean square error (RMSE) 67.6 trees ha−1/normalized RMSE 18.8%/R² 0.76; 50 ha: 22.8 trees ha−1/6.2%/0.89). Estimates for smaller scales (1-ha to 0.04-ha) were reliably for forests with low height, dense canopy or low tree height heterogeneity. Estimates for the basal area were accurate at the 1-ha scale (RMSE 4.7 tree ha−1, bias 0.8 m² ha−1) but less accurate at smaller scales. Our methodology, further tested at additional sites, provides a useful approach to determine the tree size distribution of forests by integrating information on tree allometries.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ana Aguirre ◽  
Miren del Río ◽  
Ricardo Ruiz-Peinado ◽  
Sonia Condés

Abstract Background National and international institutions periodically demand information on forest indicators that are used for global reporting. Among other aspects, the carbon accumulated in the biomass of forest species must be reported. For this purpose, one of the main sources of data is the National Forest Inventory (NFI), which together with statistical empirical approaches and updating procedures can even allow annual estimates of the requested indicators. Methods Stand level biomass models, relating the dry weight of the biomass with the stand volume were developed for the five main pine species in the Iberian Peninsula (Pinus sylvestris, Pinus pinea, Pinus halepensis, Pinus nigra and Pinus pinaster). The dependence of the model on aridity and/or mean tree size was explored, as well as the importance of including the stand form factor to correct model bias. Furthermore, the capability of the models to estimate forest carbon stocks, updated for a given year, was also analysed. Results The strong relationship between stand dry weight biomass and stand volume was modulated by the mean tree size, although the effect varied among the five pine species. Site humidity, measured using the Martonne aridity index, increased the biomass for a given volume in the cases of Pinus sylvestris, Pinus halepensis and Pinus nigra. Models that consider both mean tree size and stand form factor were more accurate and less biased than those that do not. The models developed allow carbon stocks in the main Iberian Peninsula pine forests to be estimated at stand level with biases of less than 0.2 Mg∙ha− 1. Conclusions The results of this study reveal the importance of considering variables related with environmental conditions and stand structure when developing stand dry weight biomass models. The described methodology together with the models developed provide a precise tool that can be used for quantifying biomass and carbon stored in the Spanish pine forests in specific years when no field data are available.


Sign in / Sign up

Export Citation Format

Share Document