Sea Hare (Erignathus barbatus)

Keyword(s):  
Sea Hare ◽  
1997 ◽  
Vol 54 (4) ◽  
pp. 914-921 ◽  
Author(s):  
N J Lunn ◽  
I Stirling ◽  
S N Nowicki

We flew a medium-altitude, systematic, strip-transect survey for ringed (Phoca hispida) and bearded seals (Erignathus barbatus) over western Hudson Bay in early June 1994 and 1995. The mean density (per square kilometre) of ringed seals hauled out on the ice was four times higher in 1995 (1.690) than in 1994 (0.380). The 1994 survey appeared to underestimate seal abundance because it was flown too late. Ringed seals preferred high ice cover habitat (6 + /8 ice) and, within this habitat, favoured cracking ice and large floes. We found no consistent effect of either wind or cloud cover on habitat preference. We estimated a total of 1980 bearded seals and 140<|>880 ringed seals hauled out on the sea ice in June 1995. A recent review of the relationship between ringed seal and polar bear (Ursus maritimus) populations suggests that a visible population of this size should support a population of up to 1300 polar bears, which is in general agreement with the current estimate of 1250-1300 bears in western Hudson Bay.


ChemInform ◽  
2010 ◽  
Vol 33 (32) ◽  
pp. no-no
Author(s):  
Hiroshi Nakamura ◽  
Machiko Ono ◽  
Takeshi Yamada ◽  
Atsushi Numata ◽  
Hiroyuki Akita
Keyword(s):  
Sea Hare ◽  

1979 ◽  
Vol 76 (8) ◽  
pp. 3576-3579 ◽  
Author(s):  
R. B. Kinnel ◽  
R. K. Dieter ◽  
J. Meinwald ◽  
D. Van Engen ◽  
J. Clardy ◽  
...  
Keyword(s):  
Sea Hare ◽  

Polar Biology ◽  
2021 ◽  
Author(s):  
Samuel M. Llobet ◽  
Heidi Ahonen ◽  
Christian Lydersen ◽  
Jørgen Berge ◽  
Rolf Ims ◽  
...  

AbstractMale bearded seals (Erignathus barbatus) use vocal displays to attract females and to compete with other males during the mating season. This makes it possible to monitor breeding populations of this species using passive acoustic monitoring (PAM). This study analysed year-round acoustic data records from AURAL instruments in Svalbard (Norway) to investigate seasonal variation in the acoustic presence of male bearded seals and the phenology of different call types (long, step and sweep trills) at three sites representing a variety of habitats with varied ice conditions. Male bearded seals vocalized for an extended period at a drift-ice site (Atwain; January–July) north of Spitsbergen, while the vocal season was shorter at a High Arctic land-fast-ice site (Rijpfjorden; February–June) and shorter yet again at a west-coast site that has undergone dramatic reductions in sea ice cover over the last 1.5 decades (Kongsfjorden; April–June). Generalized Additive Models showed marked seasonal segregation in the use of different trill types at Atwain, where call rates reached 400 per h, with long trills being the most numerous call type. Modest segregation of trill types was seen at Rijpfjorden, where call rates reached 300 per h, and no segregation occurred in Kongsfjorden (peak call rate 80 per h). Sea ice cover was available throughout the vocal season at Atwain and Rijpfjorden, while at Kongsfjorden peak vocal activity (May–June) occurred after the sea ice disappeared. Ongoing climate warming and sea ice reductions will likely increase the incidence of such mismatches and reduce breeding habitat for bearded seals.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jeffrey S. Prince ◽  
Paul Micah Johnson

The ultrastructure of the digestive gland of several sea hare species that produce different colored ink (Aplysia californicaproduces purple ink,A. julianawhite ink,A. parvulaboth white and purple ink, whileDolabrifera dolabriferaproduces no ink at all) was compared to determine the digestive gland’s role in the diet-derived ink production process. Rhodoplast digestive cells and their digestive vacuoles, the site of digestion of red algal chloroplast (i.e., rhodoplast) inA. californica, were present and had a similar ultrastructure in all four species. Rhodoplast digestive cell vacuoles either contained a whole rhodoplast or fragments of one or were empty. These results suggest that the inability to produce colored ink in some sea hare species is not due to either an absence of appropriate digestive machinery, that is, rhodoplast digestive cells, or an apparent failure of rhodoplast digestive cells to function. These results also propose that the digestive gland structure described herein occurred early in sea hare evolution, at least in the common ancestor to the generaAplysiaandDolabrifera. Our data, however, do not support the hypothesis that the loss of purple inking is a synapomorphy of the white-ink-producing subgenusAplysia.


Sign in / Sign up

Export Citation Format

Share Document