algal chloroplast
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Harry O. Jackson ◽  
Henry N. Taunt ◽  
Pawel M. Mordaka ◽  
Alison G. Smith ◽  
Saul Purton

Sustainable and economically viable support for an ever-increasing global population requires a paradigm shift in agricultural productivity, including the application of biotechnology to generate future crop plants. Current genetic engineering approaches aimed at enhancing the photosynthetic efficiency or composition of the harvested tissues involve relatively simple manipulations of endogenous metabolism. However, radical rewiring of central metabolism using new-to-nature pathways, so-called “synthetic metabolism”, may be needed to really bring about significant step changes. In many cases, this will require re-programming the metabolism of the chloroplast, or other plastids in non-green tissues, through a combination of chloroplast and nuclear engineering. However, current technologies for sophisticated chloroplast engineering (“transplastomics”) of plants are limited to just a handful of species. Moreover, the testing of metabolic rewiring in the chloroplast of plant models is often impractical given their obligate phototrophy, the extended time needed to create stable non-chimeric transplastomic lines, and the technical challenges associated with regeneration of whole plants. In contrast, the unicellular green alga, Chlamydomonas reinhardtii is a facultative heterotroph that allows for extensive modification of chloroplast function, including non-photosynthetic designs. Moreover, chloroplast engineering in C. reinhardtii is facile, with the ability to generate novel lines in a matter of weeks, and a well-defined molecular toolbox allows for rapid iterations of the “Design-Build-Test-Learn” (DBTL) cycle of modern synthetic biology approaches. The recent development of combinatorial DNA assembly pipelines for designing and building transgene clusters, simple methods for marker-free delivery of these clusters into the chloroplast genome, and the pre-existing wealth of knowledge regarding chloroplast gene expression and regulation in C. reinhardtii further adds to the versatility of transplastomics using this organism. Herein, we review the inherent advantages of the algal chloroplast as a simple and tractable testbed for metabolic engineering designs, which could then be implemented in higher plants.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoxiao Zou ◽  
Heroen Verbruggen ◽  
Tianjingwei Li ◽  
Jun Zhu ◽  
Zou Chen ◽  
...  

Abstract Background Chloroplasts are important semi-autonomous organelles in plants and algae. Unlike higher plants, the chloroplast genomes of green algal linage have distinct features both in organization and expression. Despite the architecture of chloroplast genome having been extensively studied in higher plants and several model species of algae, little is known about the transcriptional features of green algal chloroplast-encoded genes. Results Based on full-length cDNA (Iso-Seq) sequencing, we identified widely co-transcribed polycistronic transcriptional units (PTUs) in the green alga Caulerpa lentillifera. In addition to clusters of genes from the same pathway, we identified a series of PTUs of up to nine genes whose function in the plastid is not understood. The RNA data further allowed us to confirm widespread expression of fragmented genes and conserved open reading frames, which are both important features in green algal chloroplast genomes. In addition, a newly fragmented gene specific to C. lentillifera was discovered, which may represent a recent gene fragmentation event in the chloroplast genome. With the newly annotated exon-intron boundary information, gene structural annotation was greatly improved across the siphonous green algae lineages. Our data also revealed a type of non-canonical Group II introns, with a deviant secondary structure and intronic ORFs lacking known splicing or mobility domains. These widespread introns have conserved positions in their genes and are excised precisely despite lacking clear consensus intron boundaries. Conclusion Our study fills important knowledge gaps in chloroplast genome organization and transcription in green algae, and provides new insights into expression of polycistronic transcripts, freestanding ORFs and fragmented genes in algal chloroplast genomes. Moreover, we revealed an unusual type of Group II intron with distinct features and conserved positions in Bryopsidales. Our data represents interesting additions to knowledge of chloroplast intron structure and highlights clusters of uncharacterized genes that probably play important roles in plastids.


2020 ◽  
Author(s):  
Xiaoxiao Zou ◽  
Heroen Verbruggen ◽  
Tianjingwei Li ◽  
Jun Zhu ◽  
Zuo Chen ◽  
...  

Abstract Background: Chloroplasts are important semi-autonomous organelles in plants and algae. Unlike higher plants, the chloroplast genomes of green algal linage have distinct features both in organization and expression. Despite the architecture of chloroplast genome have been extensively studied in higher plants and several model species of algae, little is known about transcriptional features in green algal lineages. Results: Based on full-length cDNA (Iso-Seq) sequencing, we identified widely co-transcribed polycistronic transcriptional units (PTUs) in the green alga Caulerpa lentillifera. In addition to clusters of genes from the same pathway, we identified a series of PTUs of up to nine genes whose function in the plastid is not understood. The RNA data further allowed us to confirm widespread expression of fragmented genes and conserved open reading frames, which are both important features in green algal chloroplast genomes. In addition, a newly fragmented gene specific to C. lentillifera was discovered, which may represent a recent gene fragmentation event in chloroplast genome.Taking the accurate exon-intron boundary information, gene structural annotation was greatly improved across the siphonous green algae lineages. Our data also revealed a type of non-canonical Group II introns, with a deviant secondary structure and intronic ORFs lacking known splicing or mobility domains. These widespread introns have conserved positions in their genes and are excised precisely despite lacking clear consensus intron boundaries.Conclusion: Our study fills important knowledge gaps in chloroplast genome organization and transcription in green algae, and providing new insights into expression of polycistronic transcripts, freestanding ORFs and fragmented genes in algal chloroplast genomes. Moreover, we revealed an unusual type of Group II intron with distinct features and conserved positions in Bryopsidales. Our data represents interesting additions to knowledge of chloroplast intron structure and highlights clusters of uncharacterized genes that probably play important roles in plastid.


Microbiology ◽  
2020 ◽  
Vol 166 (6) ◽  
pp. 510-515 ◽  
Author(s):  
Marco Larrea-Alvarez ◽  
Saul Purton

The chloroplast of microalgae such as Chlamydomonas reinhardtii represents an attractive chassis for light-driven production of novel recombinant proteins and metabolites. Methods for the introduction and expression of transgenes in the chloroplast genome (=plastome) of C. reinhardtii are well-established and over 100 different proteins have been successfully produced. However, in almost all reported cases the complexity of the genetic engineering is low, and typically involves introduction into the plastome of just a single transgene together with a selectable marker. In order to exploit fully the potential of the algal chassis it is necessary to establish methods for multigenic engineering in which many transgenes can be stably incorporated into the plastome. This would allow the synthesis of multi-subunit proteins and the introduction into the chloroplast of whole new metabolic pathways. In this short communication we report a proof-of-concept study involving both a combinatorial and serial approach, with the goal of synthesizing five different test proteins in the C. reinhardtii chloroplast. Analysis of the various transgenic lines confirmed the successful integration of the transgenes and accumulation of the gene products. However, the work also highlights an issue of genetic instability when using the same untranslated region for each of the transgenes. Our findings therefore help to define appropriate strategies for robust multigenic engineering of the algal chloroplast.


2020 ◽  
Vol 12 (4) ◽  
pp. 309-324 ◽  
Author(s):  
Bastian Greshake Tzovaras ◽  
Francisca H I D Segers ◽  
Anne Bicker ◽  
Francesco Dal Grande ◽  
Jürgen Otte ◽  
...  

Abstract Lichens are valuable models in symbiosis research and promising sources of biosynthetic genes for biotechnological applications. Most lichenized fungi grow slowly, resist aposymbiotic cultivation, and are poor candidates for experimentation. Obtaining contiguous, high-quality genomes for such symbiotic communities is technically challenging. Here, we present the first assembly of a lichen holo-genome from metagenomic whole-genome shotgun data comprising both PacBio long reads and Illumina short reads. The nuclear genomes of the two primary components of the lichen symbiosis—the fungus Umbilicaria pustulata (33 Mb) and the green alga Trebouxia sp. (53 Mb)—were assembled at contiguities comparable to single-species assemblies. The analysis of the read coverage pattern revealed a relative abundance of fungal to algal nuclei of ∼20:1. Gap-free, circular sequences for all organellar genomes were obtained. The bacterial community is dominated by Acidobacteriaceae and encompasses strains closely related to bacteria isolated from other lichens. Gene set analyses showed no evidence of horizontal gene transfer from algae or bacteria into the fungal genome. Our data suggest a lineage-specific loss of a putative gibberellin-20-oxidase in the fungus, a gene fusion in the fungal mitochondrion, and a relocation of an algal chloroplast gene to the algal nucleus. Major technical obstacles during reconstruction of the holo-genome were coverage differences among individual genomes surpassing three orders of magnitude. Moreover, we show that GC-rich inverted repeats paired with nonrandom sequencing error in PacBio data can result in missing gene predictions. This likely poses a general problem for genome assemblies based on long reads.


PLoS ONE ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. e0229408
Author(s):  
Gunvor Bjerkelund Røkke ◽  
Martin Frank Hohmann-Marriott ◽  
Eivind Almaas

2020 ◽  
Vol 27 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Niaz Ahmad ◽  
Muhammad Aamer Mehmood ◽  
Sana Malik

: In recent years, microalgae have emerged as an alternative platform for large-scale production of recombinant proteins for different commercial applications. As a production platform, it has several advantages, including rapid growth, easily scale up and ability to grow with or without the external carbon source. Genetic transformation of several species has been established. Of these, Chlamydomonas reinhardtii has become significantly attractive for its potential to express foreign proteins inexpensively. All its three genomes – nuclear, mitochondrial and chloroplastic – have been sequenced. As a result, a wealth of information about its genetic machinery, protein expression mechanism (transcription, translation and post-translational modifications) is available. Over the years, various molecular tools have been developed for the manipulation of all these genomes. Various studies show that the transformation of the chloroplast genome has several advantages over nuclear transformation from the biopharming point of view. According to a recent survey, over 100 recombinant proteins have been expressed in algal chloroplasts. However, the expression levels achieved in the algal chloroplast genome are generally lower compared to the chloroplasts of higher plants. Work is therefore needed to make the algal chloroplast transformation commercially competitive. In this review, we discuss some examples from the algal research, which could play their role in making algal chloroplast commercially successful.


2019 ◽  
Author(s):  
Bastian Greshake Tzovaras ◽  
Francisca H.I.D. Segers ◽  
Anne Bicker ◽  
Francesco Dal Grande ◽  
Jürgen Otte ◽  
...  

AbstractLichens are valuable models in symbiosis research and promising sources of biosynthetic genes for biotechnological applications. Most lichenized fungi grow slowly, resist aposymbiotic cultivation, and are generally poor candidates for experimentation. Obtaining contiguous, high quality genomes for such symbiotic communities is technically challenging. Here we present the first assembly of a lichen holo-genome from metagenomic whole genome shotgun data comprising both PacBio long reads and Illumina short reads. The nuclear genomes of the two primary components of the lichen symbiosis – the fungus Umbilicaria pustulata (33 Mbp) and the green alga Trebouxia sp. (53 Mbp) – were assembled at contiguities comparable to single-species assemblies. The analysis of the read coverage pattern revealed a relative cellular abundance of approximately 20:1 (fungus:alga). Gap-free, circular sequences for all organellar genomes were obtained. The community of lichen-associated bacteria is dominated by Acidobacteriaceae, and the two largest bacterial contigs belong to the genus Acidobacterium. Gene set analyses showed no evidence of horizontal gene transfer from algae or bacteria into the fungal genome. Our data suggest a lineage-specific loss of a putative gibberellin-20-oxidase in the fungus, a gene fusion in the fungal mitochondrion, and a relocation of an algal chloroplast gene to the algal nucleus. Major technical obstacles during reconstruction of the holo-genome were coverage differences among individual genomes surpassing three orders of magnitude. Moreover, we show that G/C-rich inverted repeats paired with non-random sequencing error in PacBio data can result in missing gene predictions. This likely poses a general problem for genome assemblies based on long reads.


2018 ◽  
Vol 140 (2) ◽  
pp. 129-139 ◽  
Author(s):  
C. H. Lucas Patty ◽  
Freek Ariese ◽  
Wybren Jan Buma ◽  
Inge Loes ten Kate ◽  
Rob J. M. van Spanning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document