Investigation of Third Body Phenomenon in Model Braking Using Infrared Camera

Author(s):  
Zbigniew Skorupka ◽  
Antoni Jankowski
Keyword(s):  
Author(s):  
D. Majcherczak ◽  
P. Dufrenoy ◽  
Y. Berthier

The thermal study of sliding contact is complex due to numerous physical aspects highly coupled. Heat generation mechanisms are still badly known due to the complex interactions between mechanical, thermal and physico-chemical behaviours and surface degradations. In the goal to better appreciate the third body role on the thermal aspect, an experimental set-up has been realized. It consists in two rings sliding to each other, the first one is made of sapphire (rotating ring) and the second one is made of steel (fixed ring). The temperatures are obtained by an infrared camera scanning through the sapphire and by thermocouples on the contact surface specially realized for this experimental setup. The contact surfaces of the two rings have been observed with a scanning electronic microscope. Comparison between the thermal scene and the surface observations has allowed connecting the third body accumulation with local surface heating.


2005 ◽  
Vol 14 ◽  
pp. 337-342 ◽  
Author(s):  
M. Dolci ◽  
G. Valentini ◽  
O. Straniero ◽  
G. Di Rico ◽  
M. Ragni ◽  
...  

2015 ◽  
Vol 48 (8) ◽  
pp. 659-672 ◽  
Author(s):  
Yu Kwonkyu ◽  
◽  
Kim Seojun ◽  
Yoo Byeongnam ◽  
Bae Inhyuk

2020 ◽  
Vol 500 (3) ◽  
pp. 3920-3925
Author(s):  
Wolfgang Brandner ◽  
Hans Zinnecker ◽  
Taisiya Kopytova

ABSTRACT Only a small number of exoplanets have been identified in stellar cluster environments. We initiated a high angular resolution direct imaging search using the Hubble Space Telescope (HST) and its Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument for self-luminous giant planets in orbit around seven white dwarfs in the 625 Myr old nearby (≈45 pc) Hyades cluster. The observations were obtained with Near-Infrared Camera 1 (NIC1) in the F110W and F160W filters, and encompass two HST roll angles to facilitate angular differential imaging. The difference images were searched for companion candidates, and radially averaged contrast curves were computed. Though we achieve the lowest mass detection limits yet for angular separations ≥0.5 arcsec, no planetary mass companion to any of the seven white dwarfs, whose initial main-sequence masses were >2.8 M⊙, was found. Comparison with evolutionary models yields detection limits of ≈5–7 Jupiter masses (MJup) according to one model, and between 9 and ≈12 MJup according to another model, at physical separations corresponding to initial semimajor axis of ≥5–8 au (i.e. before the mass-loss events associated with the red and asymptotic giant branch phase of the host star). The study provides further evidence that initially dense cluster environments, which included O- and B-type stars, might not be highly conducive to the formation of massive circumstellar discs, and their transformation into giant planets (with m ≥ 6 MJup and a ≥6 au). This is in agreement with radial velocity surveys for exoplanets around G- and K-type giants, which did not find any planets around stars more massive than ≈3 M⊙.


Author(s):  
Bohong Yang ◽  
Kai Meng ◽  
Hong Lu ◽  
Xinyao Nie ◽  
Guanhao Huang ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Simone Zen ◽  
Jan C. Thomas ◽  
Eric V. Mueller ◽  
Bhisham Dhurandher ◽  
Michael Gallagher ◽  
...  

AbstractA new instrument to quantify firebrand dynamics during fires with particular focus on those associated with the Wildland-Urban Interface (WUI) has been developed. During WUI fires, firebrands can ignite spot fires, which can rapidly increase the rate of spread (ROS) of the fire, provide a mechanism by which the fire can pass over firebreaks and are the leading cause of structure ignitions. Despite this key role in driving wildfire dynamics and hazards, difficulties in collecting firebrands in the field and preserving their physical condition (e.g. dimensions and temperature) have limited the development of knowledge of firebrand dynamics. In this work we present a new, field-deployable diagnostic tool, an emberometer, designed to provide measurement of firebrand fluxes and information on both the geometry and the thermal conditions of firebrands immediately before deposition by combining a visual and infrared camera. A series of laboratory experiments were conducted to calibrate and validate the developed imaging techniques. The emberometer was then deployed in the field to explore firebrand fluxes and particle conditions for a range of fire intensities in natural pine forest environments. In addition to firebrand particle characterization, field observations with the emberometer enabled detailed time history of deposition (i.e. firebrand flux) relative to concurrent in situ fire behaviour observations. We highlight that deposition was characterised by intense, short duration “showers” that can be reasonably associated to spikes in the average fire line intensity. The results presented illustrate the potential use of an emberometer in studying firebrand and spot fire dynamics.


Sign in / Sign up

Export Citation Format

Share Document