Signaling Pathways in Dental Stem Cells During Their Maintenance and Differentiation

Author(s):  
Genxia Liu ◽  
Shu Ma ◽  
Yixiang Zhou ◽  
Yadie Lu ◽  
Lin Jin ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Nayansi Jha ◽  
Jae Jun Ryu ◽  
Eun Ha Choi ◽  
Nagendra Kumar Kaushik

The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases.


2019 ◽  
Vol 12 (6) ◽  
pp. 599-613 ◽  
Author(s):  
Siti Nurnasihah Md Hashim ◽  
Muhammad Fuad Hilmi Yusof ◽  
Wafa’ Zahari ◽  
Hamshawagini Chandra ◽  
Khairul Bariah Ahmad Amin Noordin ◽  
...  

2021 ◽  
Vol 160 ◽  
pp. 103277
Author(s):  
Ana Carolina B. da C. Rodrigues ◽  
Rafaela G.A. Costa ◽  
Suellen L.R. Silva ◽  
Ingrid R.S.B. Dias ◽  
Rosane B. Dias ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sophia K. Theodossiou ◽  
Jett B. Murray ◽  
LeeAnn A. Hold ◽  
Jeff M. Courtright ◽  
Anne M. Carper ◽  
...  

Abstract Background Tissue engineered and regenerative approaches for treating tendon injuries are challenged by the limited information on the cellular signaling pathways driving tenogenic differentiation of stem cells. Members of the transforming growth factor (TGF) β family, particularly TGFβ2, play a role in tenogenesis, which may proceed via Smad-mediated signaling. However, recent evidence suggests some aspects of tenogenesis may be independent of Smad signaling, and other pathways potentially involved in tenogenesis are understudied. Here, we examined the role of Akt/mTORC1/P70S6K signaling in early TGFβ2-induced tenogenesis of mesenchymal stem cells (MSCs) and evaluated TGFβ2-induced tenogenic differentiation when Smad3 is inhibited. Methods Mouse MSCs were treated with TGFβ2 to induce tenogenesis, and Akt or Smad3 signaling was chemically inhibited using the Akt inhibitor, MK-2206, or the Smad3 inhibitor, SIS3. Effects of TGFβ2 alone and in combination with these inhibitors on the activation of Akt signaling and its downstream targets mTOR and P70S6K were quantified using western blot analysis, and cell morphology was assessed using confocal microscopy. Levels of the tendon marker protein, tenomodulin, were also assessed. Results TGFβ2 alone activated Akt signaling during early tenogenic induction. Chemically inhibiting Akt prevented increases in tenomodulin and attenuated tenogenic morphology of the MSCs in response to TGFβ2. Chemically inhibiting Smad3 did not prevent tenogenesis, but appeared to accelerate it. MSCs treated with both TGFβ2 and SIS3 produced significantly higher levels of tenomodulin at 7 days and morphology appeared tenogenic, with localized cell alignment and elongation. Finally, inhibiting Smad3 did not appear to impact Akt signaling, suggesting that Akt may allow TGFβ2-induced tenogenesis to proceed during disruption of Smad3 signaling. Conclusions These findings show that Akt signaling plays a role in TGFβ2-induced tenogenesis and that tenogenesis of MSCs can be initiated by TGFβ2 during disruption of Smad3 signaling. These findings provide new insights into the signaling pathways that regulate tenogenic induction in stem cells.


2012 ◽  
Vol 5 (6) ◽  
pp. 956-966 ◽  
Author(s):  
P. Serup ◽  
C. Gustavsen ◽  
T. Klein ◽  
L. A. Potter ◽  
R. Lin ◽  
...  

2015 ◽  
Vol 90 (1-3) ◽  
pp. 48-58 ◽  
Author(s):  
Young-Hoon Kang ◽  
Hye-Jin Lee ◽  
Si-Jung Jang ◽  
June-Ho Byun ◽  
Jong-Sil Lee ◽  
...  

Cell Research ◽  
2008 ◽  
Vol 18 (S1) ◽  
pp. S59-S59
Author(s):  
Zhifeng Deng ◽  
Zhumin Liu ◽  
Wei Tu ◽  
Yang Wang ◽  
Yuanlei Lou

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Maurizio Bossù ◽  
Andrea Pacifici ◽  
Daniele Carbone ◽  
Gianluca Tenore ◽  
Gaetano Ierardo ◽  
...  

In dental practice there is an increasing need for predictable therapeutic protocols able to regenerate tissues that, due to inflammatory or traumatic events, may suffer from loss of their function. One of the topics arising major interest in the research applied to regenerative medicine is represented by tissue engineering and, in particular, by stem cells. The study of stem cells in dentistry over the years has shown an exponential increase in literature. Adult mesenchymal stem cells have recently been isolated and characterized from tooth-related tissues and they might represent, in the near future, a new gold standard in the regeneration of all oral tissues. The aim of our review is to provide an overview on the topic reporting the current knowledge for each class of dental stem cells and to identify their potential clinical applications as therapeutic tool in various branches of dentistry.


Sign in / Sign up

Export Citation Format

Share Document