MFCC Global Features Selection in Improving Speech Emotion Recognition Rate

Author(s):  
Noor Aina Zaidan ◽  
Md Sah Salam
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chenchen Huang ◽  
Wei Gong ◽  
Wenlong Fu ◽  
Dongyu Feng

Feature extraction is a very important part in speech emotion recognition, and in allusion to feature extraction in speech emotion recognition problems, this paper proposed a new method of feature extraction, using DBNs in DNN to extract emotional features in speech signal automatically. By training a 5 layers depth DBNs, to extract speech emotion feature and incorporate multiple consecutive frames to form a high dimensional feature. The features after training in DBNs were the input of nonlinear SVM classifier, and finally speech emotion recognition multiple classifier system was achieved. The speech emotion recognition rate of the system reached 86.5%, which was 7% higher than the original method.


2014 ◽  
Vol 571-572 ◽  
pp. 665-671 ◽  
Author(s):  
Sen Xu ◽  
Xu Zhao ◽  
Cheng Hua Duan ◽  
Xiao Lin Cao ◽  
Hui Yan Li ◽  
...  

As One of Features from other Languages, the Chinese Tone Changes of Chinese are Mainly Decided by its Vowels, so the Vowel Variation of Chinese Tone Becomes Important in Speech Recognition Research. the Normal Tone Recognition Ways are Always Based on Fundamental Frequency of Signal, which can Not Keep Integrity of Tone Signal. we Bring Forward to a Mathematical Morphological Processing of Spectrograms for the Tone of Chinese Vowels. Firstly, we will have Pretreatment to Recording Good Tone Signal by Using Cooledit Pro Software, and Converted into Spectrograms; Secondly, we will do Smooth and the Normalized Pretreatment to Spectrograms by Mathematical Morphological Processing; Finally, we get Whole Direction Angle Statistics of Tone Signal by Skeletonization way. the Neural Networks Stimulation Shows that the Speech Emotion Recognition Rate can Reach 92.50%.


Author(s):  
Jian Zhou ◽  
Guoyin Wang ◽  
Yong Yang

Speech emotion recognition is becoming more and more important in such computer application fields as health care, children education, etc. In order to improve the prediction performance or providing faster and more cost-effective recognition system, an attribute selection is often carried out beforehand to select the important attributes from the input attribute sets. However, it is time-consuming for traditional feature selection method used in speech emotion recognition to determine an optimum or suboptimum feature subset. Rough set theory offers an alternative, formal and methodology that can be employed to reduce the dimensionality of data. The purpose of this study is to investigate the effectiveness of Rough Set Theory in identifying important features in speech emotion recognition system. The experiments on CLDC emotion speech database clearly show this approach can reduce the calculation cost while retaining a suitable high recognition rate.


2016 ◽  
Vol 7 (1) ◽  
pp. 58-68 ◽  
Author(s):  
Imen Trabelsi ◽  
Med Salim Bouhlel

Automatic Speech Emotion Recognition (SER) is a current research topic in the field of Human Computer Interaction (HCI) with a wide range of applications. The purpose of speech emotion recognition system is to automatically classify speaker's utterances into different emotional states such as disgust, boredom, sadness, neutral, and happiness. The speech samples in this paper are from the Berlin emotional database. Mel Frequency cepstrum coefficients (MFCC), Linear prediction coefficients (LPC), linear prediction cepstrum coefficients (LPCC), Perceptual Linear Prediction (PLP) and Relative Spectral Perceptual Linear Prediction (Rasta-PLP) features are used to characterize the emotional utterances using a combination between Gaussian mixture models (GMM) and Support Vector Machines (SVM) based on the Kullback-Leibler Divergence Kernel. In this study, the effect of feature type and its dimension are comparatively investigated. The best results are obtained with 12-coefficient MFCC. Utilizing the proposed features a recognition rate of 84% has been achieved which is close to the performance of humans on this database.


2016 ◽  
Vol 10 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Tatjana Liogienė ◽  
Gintautas Tamulevičius

Abstract The intensive research of speech emotion recognition introduced a huge collection of speech emotion features. Large feature sets complicate the speech emotion recognition task. Among various feature selection and transformation techniques for one-stage classification, multiple classifier systems were proposed. The main idea of multiple classifiers is to arrange the emotion classification process in stages. Besides parallel and serial cases, the hierarchical arrangement of multi-stage classification is most widely used for speech emotion recognition. In this paper, we present a sequential-forward-feature-selection-based multi-stage classification scheme. The Sequential Forward Selection (SFS) and Sequential Floating Forward Selection (SFFS) techniques were employed for every stage of the multi-stage classification scheme. Experimental testing of the proposed scheme was performed using the German and Lithuanian emotional speech datasets. Sequential-feature-selection-based multi-stage classification outperformed the single-stage scheme by 12–42 % for different emotion sets. The multi-stage scheme has shown higher robustness to the growth of emotion set. The decrease in recognition rate with the increase in emotion set for multi-stage scheme was lower by 10–20 % in comparison with the single-stage case. Differences in SFS and SFFS employment for feature selection were negligible.


2014 ◽  
Vol 543-547 ◽  
pp. 2192-2195 ◽  
Author(s):  
Chen Chen Huang ◽  
Wei Gong ◽  
Wen Long Fu ◽  
Dong Yu Feng

As the most important medium of communication in human beings life, speech carries abundant emotional information. In recent years, how to recognize the speakers emotional state automatically from the speech is attracting extensive attention of researchers in various fields. In this paper, we studied the method of speech emotion recognition. We collected a total of 360 sentences from four speakers with the emotional statement about happiness, anger, surprise, sadness, and extracted eight emotional characteristics from these voice data. Contribution analysis method is proposed to determine the value of emotion characteristic parameters. We also have used the weighted Euclidean distance template matching to identify the speech emotion, got more than 80% of the average emotional recognition rate.


2013 ◽  
Vol 385-386 ◽  
pp. 1385-1388
Author(s):  
Yong Qiang Bao ◽  
Li Zhao ◽  
Cheng Wei Hang

In this paper we introduced the application of Fuzzy KDA in speech emotion recognition using elicited data. The emotional data induced in a psychology experiment. The acted data is not suitable for developing real world applications and by using more naturalistic data we may build more reliable system. The emotional feature set is then constructed for modeling and recognition. A total of 372 low level acoustic features are used and kernel discriminant analysis is used for emotion recognition. The experimental results show a promising recognition rate.


2021 ◽  
Vol 11 (11) ◽  
pp. 4782
Author(s):  
Huan-Chung Li ◽  
Telung Pan ◽  
Man-Hua Lee ◽  
Hung-Wen Chiu

In recent years, many types of research have continued to improve the environment of human speech and emotion recognition. As facial emotion recognition has gradually matured through speech recognition, the result of this study provided more accurate recognition of complex human emotional performance, and speech emotion identification will be derived from human subjective interpretation into the use of computers to automatically interpret the speaker’s emotional expression. Focused on use in medical care, which can be used to understand the current feelings of physicians and patients during a visit, and improve the medical treatment through the relationship between illness and interaction. By transforming the voice data into a single observation segment per second, the first to the thirteenth dimensions of the frequency cestrum coefficients are used as speech emotion recognition eigenvalue vectors. Vectors for the eigenvalue vectors are maximum, minimum, average, median, and standard deviation, and there are 65 eigenvalues in total for the construction of an artificial neural network. The sentiment recognition system developed by the hospital is used as a comparison between the sentiment recognition results of the artificial neural network classification, and then use the foregoing results for a comprehensive analysis to understand the interaction between the doctor and the patient. Using this experimental module, the emotion recognition rate is 93.34%, and the accuracy rate of facial emotion recognition results can be 86.3%.


Sign in / Sign up

Export Citation Format

Share Document