Firefly – A New Generation of Low Cost, Small Satellite Launch Vehicles Designed to Serve the Rapidly Growing Small Satellite Market

Author(s):  
Tom Markusic ◽  
Shey Sabripour ◽  
PJ King ◽  
Andy Bradford
1994 ◽  
Author(s):  
Daniel Moser ◽  
Scott Frazier
Keyword(s):  
Low Cost ◽  

2002 ◽  
Vol 39 (5) ◽  
pp. 818-820 ◽  
Author(s):  
Frederick W. Boltz

Author(s):  
Devina Cristine Marubin ◽  
◽  
Sim Sy Yi ◽  

Can-Sized satellite (canSAT) is a small satellite that is used for educational purpose. CanSAT offer student to build their satellites with their creativity which make the learning process more effective. In Malaysia, SiswaSAT is held by the Malaysia Space Agency for students in different categories to participate and build their satellites according to rules set and it should be a low-cost project. CanSAT can be divided into few parts which are communication system, onboard data acquisition, ground control station and power system. The power system is one of the important and heaviest subsystems, it needed to supply power, but weight and size are one of the main concerned as the canSAT should not exceed the required weight and selecting power supply that is matched with the overall power budget that has small size and lightweight is challenging. Therefore, the power supply selection should consider this detail. The power distribution design should be able to supply an appropriate amount of current and voltage to the components according to their specification. This study aims to develop and test the proposed prototype which is named ScoreSAT able to provide data and have enough power supply for the whole operation. Therefore, an initiative to develop the appropriate power distribution design for canSAT is taken to overcome the problem of the power system. Moreover, each subsystem needs to be tested by obtaining the results from the onboard data acquisition and transmit the data using the communication system before integrating into the power system. ScoreSAT prototype needs to carry the system that is mounted inside, thus the space inside the prototype needs to be fully utilized for the whole system to fit in. ScoreSAT completes the mission by obtaining data acquisition during the operation.


Nukleonika ◽  
2016 ◽  
Vol 61 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Irina V. Litovko ◽  
Alexy A. Goncharov ◽  
Andrew N. Dobrovolskiy ◽  
Lily V. Naiko ◽  
Irina V. Naiko

Abstract The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.


Transparent conducting electrodes (TCEs) play a vital role for the fabrication of solar cells and pivoted almost 50% of the total cost. Recently several materials have been identified as TCEs in solar cell applications. Still, indium tin oxide (ITO) based TCEs have dominated the market due to their outstanding optical transparency and electrical conductivity. However, inadequate availability of indium has increased the price of ITO based TCEs, which attracts the researchers to find alternative materials to make solar technology economical. In this regard, various kinds of conducting materials are available and synthesized worldwide with high electrical conductivity and optical transparency in order to find alternative to ITO based electrodes. Especially, new generation nanomaterials have opened a new window for the fabrication of cost effective TCEs. Carbon nanomaterials such as graphene, carbon nanotubes (CNTs), metal nanowires (MNWs) and metal mesh (MMs) based electrodes especially attracted the scientific community for fabrication of low cost photovoltaic devices. In addition to it, various conducting polymers such as poly (3, 4-ethylene dioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) based TCEs have also showed their candidacy as an alternative to ITO based TCEs. Thus, the present chapter gives an overview on materials available for the TCEs and their possible use in the field of solar cell technology


Sign in / Sign up

Export Citation Format

Share Document