Developmental Innovation and Phenotypic Novelty

Author(s):  
Gerd B. Müller
Keyword(s):  
PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0123834 ◽  
Author(s):  
Telma da Silva ◽  
Warren Albertin ◽  
Christine Dillmann ◽  
Marina Bely ◽  
Stéphane la Guerche ◽  
...  
Keyword(s):  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Isabel Nocedal ◽  
Eugenio Mancera ◽  
Alexander D Johnson

The rewiring of gene regulatory networks can generate phenotypic novelty. It remains an open question, however, how the large number of connections needed to form a novel network arise over evolutionary time. Here, we address this question using the network controlled by the fungal transcription regulator Ndt80. This conserved protein has undergone a dramatic switch in function—from an ancestral role regulating sporulation to a derived role regulating biofilm formation. This switch in function corresponded to a large-scale rewiring of the genes regulated by Ndt80. However, we demonstrate that the Ndt80-target gene connections were undergoing extensive rewiring prior to the switch in Ndt80’s regulatory function. We propose that extensive drift in the Ndt80 regulon allowed for the exploration of alternative network structures without a loss of ancestral function, thereby facilitating the formation of a network with a new function.


2020 ◽  
Author(s):  
Quentin J.B. Horta-Lacueva ◽  
Sigurður S. Snorrason ◽  
Michael B. Morrissey ◽  
Camille A. Leblanc ◽  
Kalina H. Kapralova

AbstractStudying the development of fitness related traits in hybrids from populations diverging in sympatry is a fundamental approach to understand the processes of speciation. However, such traits are often affected by covariance structures that complicate the comprehension of these processes, especially because the interactive relationships between traits of different nature (e.g. morphology, behaviour, life-history) remain largely unknown in this context. In a common garden setup, we conducted an extensive examination of phenotypic traits suspected to be involved in the divergence of two recently evolved morphs of Arctic charr (Salvelinus alpinus), and investigated the consequences of potential patterns of trait covariance on the phenotype of their hybrids. We observed differences among morphs in overall phenotypic variance and in trait correlations. Phenotypic contrainsts also tended to be reduced in the hybrids, which corroborates the narrative of hybridization facilitating adaptive divergence by relaxing trait covariance. However, the hybrids were associated with reduced phenotypic variance at different scales (i.e. at the scale of the entire P matrix and in different parts of the multivariate space), and we identified stronger correlations between several ontogenetic and morphological traits in the hybrids than in both morphs. These findings suggest a limited potential for hybridization to generate phenotypic novelty, and emphasise the need for multivariate approaches conciliating ontogenetic, morphological and behavioural processes to study the processes of adaptive divergence and speciation.


2021 ◽  
Author(s):  
Sergio Perez-Limon ◽  
Meng Li ◽  
G. Carolina Cintora-Martinez ◽  
M. Rocio Aguilar-Rangel ◽  
M. Nancy Salazar-Vidal ◽  
...  

Generations of farmer selection have produced a unique collection of traditional maize varieties adapted to the environmental challenges of the central Mexican highlands. In addition to agronomic and cultural value, Mexican highland maize represents a good system for the study of local adaptation and acquisition of adaptive phenotypes under cultivation. In this study, we characterized a recombinant inbred line population derived from the cross of the B73 reference line and the Mexican highland maize variety Palomero Toluqueo. Evaluation over multiple years in lowland and highland field sites in Mexico identified genomic regions linked to yield components and putatively adaptive morphological traits. A region on chromosome 7 associated with ear weight showed antagonistic allelic effects in lowland and highland fields, suggesting a trade-off consistent with local adaptation. We identified several alleles of highland origin associated with characteristic highland traits, including reduced tassel branching, increased stem pigmentation and the presence of stem macrohairs. The oligogenic architecture of characteristic morphological traits supports their role in adaptation, suggesting they have arisen from consistent directional selection acting at distinct points across the genome. We discuss these results in the context of the origin of phenotypic novelty during selection, commenting on the role of de novo mutation and the acquisition of adaptive variation by gene flow from endemic wild relatives.


2020 ◽  
Vol 129 (4) ◽  
pp. 931-949 ◽  
Author(s):  
Ondřej Mikula ◽  
Violaine Nicolas ◽  
Zbyszek Boratyński ◽  
Christiane Denys ◽  
Gauthier Dobigny ◽  
...  

Abstract The murid rodent Praomys daltoni is widespread in Sudanian savanna and woodlands of West Africa, and previous study of mitochondrial DNA variability suggested that it encompasses the phenotypically (small, grey-bellied) and ecologically (commensal) distinct form, Praomys derooi. Here, we comprehensively examined the genetic and morphological diversity within the complex. Six mitochondrial lineages showed a fine-scale phylogeographical pattern, whereas delimitation based on nuclear loci pooled four of them into a single widespread unit. A newly discovered lineage from southern Mauritania stands apart from the rest of the complex and might represent an unrecognized species. At the same time, the internal position of P. derooi (C2 mitochondrial lineage) was confirmed by the multilocus analysis. The magnitude of genetic distances between major phylogeographical lineages was typical for interspecific divergence in other clades of Praomys, despite the little differences among them in morphology (skull and upper molar row shapes). The most pronounced morphological shift was associated with a transition to commensalism, especially in P. derooi, but also in other lineages. This makes the whole complex a suitable model for the study of phenotypic novelty, the evolution of commensalism and conditions for ecological speciation.


2018 ◽  
Vol 435 (2) ◽  
pp. 170-175 ◽  
Author(s):  
Chen Liu ◽  
Panagiotis N. Moschou
Keyword(s):  

2015 ◽  
Vol 282 (1798) ◽  
pp. 20142272 ◽  
Author(s):  
Paul Nichols ◽  
Martin J. Genner ◽  
Cock van Oosterhout ◽  
Alan Smith ◽  
Paul Parsons ◽  
...  

Theory proposes that genomic admixture between formerly reproductively isolated populations can generate phenotypic novelty for selection to act upon. Secondary contact may therefore be a significant promoter of phenotypic novelty that allows species to overcome environmental challenges and adapt to novel environments, including during adaptive radiation. To date, this has largely been considered from the perspective of interspecific hybridization at contact zones. However, it is also possible that this process occurs more commonly between natural populations of a single species, and thus its importance in adaptive evolution may have been underestimated. In this study, we tested the consequences of genomic introgression during apparent secondary contact between phenotypically similar lineages of the riverine cichlid fish Astatotilapia calliptera . We provide population genetic evidence of a secondary contact zone in the wild, and then demonstrate using mate-choice experiments that both lineages can reproduce together successfully in laboratory conditions. Finally, we show that genomically admixed individuals display extreme phenotypes not observed in the parental lineages. Collectively, the evidence shows that secondary contact can drive the evolution of phenotypic novelty, suggesting that pulses of secondary contact may repeatedly seed genetic novelty, which when coupled with ecological opportunity could promote rapid adaptive evolution in natural circumstances.


Sign in / Sign up

Export Citation Format

Share Document