ancestral function
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jonathan Eugene Phillips ◽  
Maribel Santos ◽  
Mohammed Kanchwala ◽  
Chao Xing ◽  
Duojia Pan

Many genes that function in animal development are present in the close unicellular relatives of animals, but little is known regarding the premetazoan function of these genes. Here, we develop techniques for genetic manipulation in the filasterean Capsaspora owczarzaki and use these tools to characterize the Capsaspora ortholog of the Hippo signaling nuclear effector YAP/TAZ/Yorkie (coYki). In contrast to its potent oncogene activity in metazoans, we show that coYki is dispensable for cell proliferation but regulates cytoskeletal dynamics and the morphology of multicellular aggregates in Capsaspora. Our results suggest an ancestral role for the Hippo pathway in cytoskeletal regulation, which was later co-opted to regulate cell proliferation in animals.


2021 ◽  
Author(s):  
Arthur Cross ◽  
John Baijun ◽  
Robbie Waugh ◽  
Agnieszka Golicz ◽  
Mohammad Pourkheirandish

Abstract One of the most critical events in the process of cereal domestication was the loss of the natural mode of grain dispersal. Grain dispersal in barley is controlled by two major genes, Btr1 and Btr2, which affect the thickness of cell walls around the disarticulation zone. The barley genome also encodes Btr1-like and Btr2-like genes, which have been shown to be the ancestral copies. While Btr and Btr-like genes are non-redundant, the biological function of Btr-like genes is unknown. We explored the potential biological role of the Btr-like genes by surveying their expression profile across 212 publicly available transcriptome datasets representing diverse organs, developmental stages and stress conditions. We found that Btr1-like and Btr2-like are expressed exclusively in immature anther samples throughout Prophase I of meiosis within the meiocyte. The similar and restricted expression profile of these two genes suggests they are involved in a common biological function. Further analysis revealed 141 genes co-expressed with Btr1-like and 122 genes co-expressed with Btr2-like, with 105 genes in common, supporting Btr-like genes involvement in a shared molecular pathway. We hypothesize that the Btr-like genes play a crucial role in pollen development by facilitating the formation of the callose wall around the meiocyte or in the secretion of callase by the tapetum. Our data suggest that Btr genes retained an ancestral function in cell wall modification and gained a new role in grain dispersal due to changes in their spatial expression becoming spike specific after gene-duplication.


2021 ◽  
Author(s):  
Kyoichi Kodama ◽  
Mélanie K. Rich ◽  
Akiyoshi Yoda ◽  
Shota Shimazaki ◽  
Xiaonan Xie ◽  
...  

AbstractIn flowering plants, carotenoid-derived strigolactones (SLs) have dual functions as hormones that regulate growth and development, and as rhizosphere signaling molecules that induce symbiosis with arbuscular mycorrhizal (AM) fungi. Here, we report the identification of bryosymbiol (BSB), a previously unidentified SL from the bryophyte Marchantia paleacea. BSB is also found in vascular plants, indicating that it is ancestral in land plants. BSB synthesis is enhanced at AM symbiosis permissive conditions and BSB deficient mutants are impaired in AM symbiosis. In contrast, the absence of BSB synthesis has little effect on the growth and gene expression. We show that the introduction of the SL receptor of Arabidopsis renders M. paleacea cells BSB-responsive. These results suggest that BSB is not perceived by M. paleacea cells due to the lack of cognate SL receptors. We propose that SLs originated as AM symbiosis-inducing rhizosphere signaling molecules and were later recruited as plant hormone.


Author(s):  
Carrie Hiser ◽  
Beronda L. Montgomery ◽  
Shelagh Ferguson-Miller

AbstractThe ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.


2021 ◽  
Author(s):  
Eric Van Otterloo ◽  
Kenneth Jones ◽  
Hamish Pike ◽  
Hong Li ◽  
Isaac Milanda ◽  
...  

The facial surface ectoderm is essential for normal development of the underlying cranial neural crest cell populations, providing signals that direct appropriate growth, patterning, and morphogenesis. Despite the importance of the ectoderm as a signaling center, the molecular cues and genetic programs implemented within this tissue are understudied. Here we show that removal of two members of the AP-2 transcription factor family, AP-2α and AP-2β, within the early embryonic ectoderm leads to major alterations in the mouse craniofacial complex. Significantly, there are clefts in both the upper face and mandible, accompanied by fusion of the upper and lower jaws in the hinge region. Comparison of ATAC-seq and RNA-seq analyses between controls and mutants revealed significant changes in chromatin accessibility and gene expression centered on multiple AP-2 binding motifs associated with enhancer elements within these ectodermal lineages. In particular, loss of these AP-2 proteins affects both skin differentiation as well as multiple signaling pathways, most notably the WNT pathway. The role of reduced Wnt signaling throughput in the mutant phenotype was further confirmed using reporter assays and rescue experiments involving Wnt1 ligand overexpression. Collectively, these findings highlight a conserved ancestral function for AP-2 transcription factors in ectodermal development and signaling, and provide a framework from which to understand the gene regulatory network operating within this tissue that directs vertebrate craniofacial development.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1433
Author(s):  
Benoit Palancade ◽  
Rodney Rothstein

RNA-containing structures, including ribonucleotide insertions, DNA:RNA hybrids and R-loops, have recently emerged as critical players in the maintenance of genome integrity. Strikingly, different enzymatic activities classically involved in genome maintenance contribute to their generation, their processing into genotoxic or repair intermediates, or their removal. Here we review how this substrate promiscuity can account for the detrimental and beneficial impacts of RNA insertions during genome metabolism. We summarize how in vivo and in vitro experiments support the contribution of DNA polymerases and homologous recombination proteins in the formation of RNA-containing structures, and we discuss the role of DNA repair enzymes in their removal. The diversity of pathways that are thus affected by RNA insertions likely reflects the ancestral function of RNA molecules in genome maintenance and transmission.


2021 ◽  
Vol 224 (7) ◽  
Author(s):  
Travis J. Fleming ◽  
Catherine S. Schrankel ◽  
Himanshu Vyas ◽  
Hannah D. Rosenblatt ◽  
Amro Hamdoun

ABSTRACT The ABC transporter ABCB1 plays an important role in the disposition of xenobiotics. Embryos of most species express high levels of this transporter in early development as a protective mechanism, but its native substrates are not known. Here, we used larvae of the sea urchin Strongylocentrotus purpuratus to characterize the early life expression and role of Sp-ABCB1a, a homolog of ABCB1. The results indicate that while Sp-ABCB1a is initially expressed ubiquitously, it becomes enriched in the developing gut. Using optimized CRISPR/Cas9 gene editing methods to achieve high editing efficiency in the F0 generation, we generated ABCB1a crispant embryos with significantly reduced transporter efflux activity. When infected with the opportunistic pathogen Vibrio diazotrophicus, Sp-ABCB1a crispant larvae demonstrated significantly stronger gut inflammation, immunocyte migration and cytokine Sp-IL-17 induction, as compared with infected control larvae. The results suggest an ancestral function of ABCB1 in host–microbial interactions, with implications for the survival of invertebrate larvae in the marine microbial environment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicolas Leurs ◽  
Camille Martinand-Mari ◽  
Stéphanie Ventéo ◽  
Tatjana Haitina ◽  
Mélanie Debiais-Thibaud

Matrix Gla protein (Mgp) and bone Gla protein (Bgp) are vitamin-K dependent proteins that bind calcium in their γ-carboxylated versions in mammals. They are recognized as positive (Bgp) or negative (Mgp and Bgp) regulators of biomineralization in a number of tissues, including skeletal tissues of bony vertebrates. The Mgp/Bgp gene family is poorly known in cartilaginous fishes, which precludes the understanding of the evolution of the biomineralization toolkit at the emergence of jawed vertebrates. Here we took advantage of recently released genomic and transcriptomic data in cartilaginous fishes and described the genomic loci and gene expression patterns of the Mgp/Bgp gene family. We identified three genes, Mgp1, Mgp2, and Bgp, in cartilaginous fishes instead of the single previously reported Mgp gene. We describe their genomic loci, resulting in a dynamic evolutionary scenario for this gene family including several events of local (tandem) duplications, but also of translocation events, along jawed vertebrate evolution. We describe the expression patterns of Mgp1, Mgp2, and Bgp in embryonic stages covering organogenesis in the small-spotted catshark Scyliorhinus canicula and present a comparative analysis with Mgp/Bgp family members previously described in bony vertebrates, highlighting ancestral features such as early embryonic, soft tissues, and neuronal expressions, but also derived features of cartilaginous fishes such as expression in fin supporting fibers. Our results support an ancestral function of Mgp in skeletal mineralization and a later derived function of Bgp in skeletal development that may be related to the divergence of bony vertebrates.


2020 ◽  
Author(s):  
Martin A. Mecchia ◽  
Moritz Rövekamp ◽  
Alejandro Giraldo-Fonseca ◽  
Dario Meier ◽  
Philippe Gadient ◽  
...  

SummaryPlant cells are surrounded by a cell wall, a rigid structure rich in polysaccharides and glycoproteins. The cell wall is not only important for cell and organ shape, but crucial for intercellular communication, plant-microbe interactions, and as a barrier to the environment. In the flowering plant Arabidopsis thaliana, the 17 members of the Catharanthus roseus RLK1-like (CrRLK1L) receptor kinase subfamily are involved in a multitude of physiological and developmental processes involving the cell wall, including reproduction, hormone signaling, cell expansion, innate immunity, and various stress responses. Due to genetic redundancy and the fact that individual CrRLK1Ls can have distinct and sometimes opposing functions, it is difficult to assess the primary or ancestral function of CrRLK1Ls. To reduce genetic complexity, we characterized the single CrRLK1L gene of Marchantia polymorpha, MpFERONIA (MpFER). Plants with reduced MpFER levels show defects in vegetative development, i.e., rhizoid formation and cell expansion, but also affect male fertility. In contrast, Mpfer null mutants and overexpression lines severely affect cell integrity and morphogenesis of the gametophyte. Thus, the CrRLK1L gene family originated from a single gene with an ancestral function in cell expansion and the maintenance of cellular integrity. During land plant evolution, this ancestral gene diversified and was recruited to fulfil a multitude of specialized physiological and developmental and roles in the formation of both gametophytic and sporophytic structures essential to the life cycle of flowering plants.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Nipun S Basrur ◽  
Maria Elena De Obaldia ◽  
Takeshi Morita ◽  
Margaret Herre ◽  
Ricarda K von Heynitz ◽  
...  

The Aedes aegypti mosquito shows extreme sexual dimorphism in feeding. Only females are attracted to and obtain a blood-meal from humans, which they use to stimulate egg production. The fruitless gene is sex-specifically spliced and encodes a BTB zinc-finger transcription factor proposed to be a master regulator of male courtship and mating behavior across insects. We generated fruitless mutant mosquitoes and showed that males failed to mate, confirming the ancestral function of this gene in male sexual behavior. Remarkably, fruitless males also gain strong attraction to a live human host, a behavior that wild-type males never display, suggesting that male mosquitoes possess the central or peripheral neural circuits required to host-seek and that removing fruitless reveals this latent behavior in males. Our results highlight an unexpected repurposing of a master regulator of male-specific sexual behavior to control one module of female-specific blood-feeding behavior in a deadly vector of infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document