pH Regulation and Excretion in Echinoderms

Author(s):  
Meike Stumpp ◽  
Marian Y. Hu
Keyword(s):  
Diabetes ◽  
1995 ◽  
Vol 44 (2) ◽  
pp. 196-202 ◽  
Author(s):  
N. Khandoudi ◽  
M. Bernard ◽  
P. Cozzone ◽  
D. Feuvray

1995 ◽  
Vol 269 (1) ◽  
pp. C226-C233 ◽  
Author(s):  
V. Casavola ◽  
R. J. Turner ◽  
C. Guay-Broder ◽  
K. A. Jacobson ◽  
O. Eidelman ◽  
...  

The selective A1-adenosine-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPX), has been reported to activate Cl- efflux from cystic fibrosis cells, such as pancreatic CFPAC-1 and lung IB3 cells bearing the cystic fibrosis transmembrane regulator(delta F508) mutation, but has little effect on the same process in cells repaired by transfection with wild-type cystic fibrosis transmembrane regulator (O. Eidelman, C. Guay-Broder, P. J. M. van Galen, K. A. Jacobson, C. Fox, R. J. Turner, Z. I. Cabantchik, and H. B. Pollard. Proc. Natl. Acad. Sci. USA 89: 5562-5566, 1992). We report here that CPX downregulates Na+/H+ exchange activity in CFPAC-1 cells but has a much smaller effect on cells repaired with the wild-type gene. CPX also mildly decreases resting intracellular pH. In CFPAC-1 cells, this downregulation is dependent on the presence of adenosine, since pretreatment of the cells with adenosine deaminase blocks the CPX effect. We also show that, by contrast, CPX action on these cells does not lead to alterations in intracellular free Ca2+ concentration. We conclude that CPX affects pH regulation in CFPAC-1 cells, probably by antagonizing the tonic action of endogenous adenosine.


1986 ◽  
Vol 251 (1) ◽  
pp. C55-C65 ◽  
Author(s):  
S. Grinstein ◽  
W. Furuya

Activation of neutrophils by 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by an initial cytoplasmic acidification, followed by an alkalinizing phase due to Na+-H+ countertransport. The source of the acidification, which is fully expressed by activation with TPA in Na+-free or amiloride-containing media, was investigated. The acidification phase was detected also in degranulated and enucleated cytoplasts, ruling out a major contribution by the nucleus or secretory vesicles. Cytoplasmic acidification was found to be associated with an extracellular acidification, suggesting metabolic generation of H+. Two principal metabolic pathways are stimulated in activated neutrophils: the reduction of O2 by NADPH-oxidase and the hexose monophosphate shunt. A good correlation was found between the activity of these pathways and the changes in cytoplasmic pH. Inhibition of superoxide synthesis prevented the TPA-induced cytoplasmic acidification. Moreover, activation of the hexose monophosphate shunt with permeable NADPH-oxidizing agents (in the absence of TPA) also produced a cytoplasmic acidification. Cytoplasmic acidification was also elicited by exogenous diacylglycerol and by other beta-phorbol diesters, which are activators of the kinase, but not by unesterified phorbol or by alpha-phorbol diesters, which are biologically inactive. The results suggest that the cytoplasmic acidification induced by phorbol esters in neutrophils reflects accumulation of H+ liberated during the metabolic burst that follows activation.


1994 ◽  
Vol 269 (23) ◽  
pp. 16254-16259 ◽  
Author(s):  
L. Vieira ◽  
A. Lavan ◽  
F. Dagger ◽  
Z.I. Cabantchik

1992 ◽  
Vol 267 (32) ◽  
pp. 22740-22746
Author(s):  
A Nanda ◽  
A Gukovskaya ◽  
J Tseng ◽  
S Grinstein

2021 ◽  
Author(s):  
Qing Zhao ◽  
Samuel Gyebi Arhin ◽  
Ziyi Yang ◽  
Haopeng Liu ◽  
Zongye Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document