Simplified Model of City Bus Dynamics as a Tool of an Energy Consumption Estimation

Author(s):  
Tomasz Pałczyński
2021 ◽  
Vol 236 ◽  
pp. 02020
Author(s):  
Wenwei Wang ◽  
Hong Pan ◽  
Lin Cheng

This paper proposes a reformed dynamic programming (DP) based energy management strategy for a city bus driven by dual-motor coupling propulsion system(DMCPS). An instantaneous optimal problem of DMCPS’s total energy loss is constructed to solve the torque allocation between two motors. Taking the results as extra constraints, a reformed DP architecture aimed at optimal energy consumption is established, where the state variables are the battery’s SOC and operating modes of DMCPS, with a sole decision variable of mode switching action. The optimization results show a close performance to the original method, with the calculation efficiency greatly improved and the calculation time reduced by nearly 97%. To obtain practical rules for real-time application, the mode switching schedule is extracted based on a RBF-SVM classifier, and the torque allocation is ruled by linear function. Simulation results demonstrate that the extracted rules can be executed through an on-board processor, with energy consumption reduced by 2.19% compared to the original rule-based strategy.


2019 ◽  
Author(s):  
Guido Francesco Frate ◽  
Marco Francesconi ◽  
Nicola Bosi ◽  
Lorenzo Ferrari ◽  
Umberto Desideri

2014 ◽  
Vol 936 ◽  
pp. 1775-1779
Author(s):  
Jun Liang Yu

Porcelain produce is a very high energy consumption process. According to total energy balance analysis, a variety of operating conditions are analyzed for effect of net energy consumption. One real porcelain plate produce process is introduced as the reference case. Operating conditions are defined in three parameters, which are air excess number, fuel distribution and solid mass ratio. A simplified model based on finite difference method (FDM) is solved to calculate axial gas and solid temperature profiles and net energy consumption. The net energy consumption in porcelain produce is calculated and discussed in quantity with three operating conditions above separately. Finally, it is concluded that net energy consumption is higher with bigger air excess number and solid mass ratio, while fuel distribution will have no influence on net energy consumption.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yanfeng Xiong ◽  
Qiang Yu ◽  
Shengyu Yan ◽  
Xiaodong Liu

This paper proposes a novel decoupled approach of a regenerative braking system for an electric city bus, aiming at improving the utilization of the kinetic energy for rear axle during a braking process. Three contributions are added to distinguish from the previous research. Firstly, an energy-flow model of the electric bus is established to identify the characteristic parameters which affect the energy-saving efficiency of the vehicle, while the key parameters (e.g., driving cycles and the recovery rate of braking energy) are also analyzed. Secondly, a decoupled braking energy recovery scheme together with the control strategy is developed based on the characteristics of the power assistance for electric city bus which equips an air braking system, as well as the regulatory requirements of ECE R13. At last, the energy consumption of the electric city bus is analyzed by both the simulation and vehicle tests, when the superimposed and the decoupled regenerative braking system are, respectively, employed for the vehicle. The simulation and actual road test results show that compared with the superposition braking system of the basic vehicle, the decoupled braking energy recovery system after the reform can improve the braking energy recovery rate and vehicle energy-saving degree. The decoupled energy recovery system scheme and control strategy proposed in this paper can be adopted by bus factories to reduce the energy consumption of pure-electric buses.


2014 ◽  
Vol 556-562 ◽  
pp. 6643-6646
Author(s):  
Teng Teng Li ◽  
Zhang Gao ◽  
Kong Jian Qin

A hybrid electric city bus was tested to explore its energy consumption and emissions under Chinese City Bus Cycle (CCBC) and World Transient Vehicle Cycle (WTVC). Energy consumption and emission factors under two cycles were compared. Contribution rates of different driving models to gaseous emissions were studied. Results showed, energy consumption and CO factor under CCBC were higher than those under WTVC, THC and NOx factors under CCBC were lower. Contribution rates of accelerating models to THC and NOx were 3~4 times higher than those of idle models, contribution rates of CO were more than ten times of that of idle models.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 951 ◽  
Author(s):  
Andrzej Łebkowski

This article analyzes various configurations of Hybrid Energy Storage Systems consisting of batteries only, combinations of batteries and supercapacitors, and supercapacitors only. For the presented configurations, mathematical models that were used in research in terms of energy consumption and carbon dioxide emissions were developed, employing a 12-m city bus as a test bed. The tests were carried out using standard test cycles for heavy vehicles as well as routes developed on the basis of actual road conditions. The obtained test results confirmed that the lowest energy consumption is characterized by the system supplied exclusively by batteries (855 Wh/km), followed by a hybrid system of a large battery with a small supercapacitor (941 Wh/km), a hybrid system with a large supercapacitor and a small battery pack (1087 Wh/km), and finally a system with a supercapacitor only (1091 Wh/km). In comparison with the conventional diesel power system (3967 Wh/km), the CO2 emission reductions ranged from 27% to 43%, depending on the source of electrical energy.


Sign in / Sign up

Export Citation Format

Share Document