Bioactive Glasses in AngiogenesisAngiogenesis and Wound HealingWound Healing : Soft Tissue RepairSoft Tissue Repair

Author(s):  
Gurbinder Kaur
2017 ◽  
Vol 5 (31) ◽  
pp. 6167-6174 ◽  
Author(s):  
Shiva Naseri ◽  
William C. Lepry ◽  
Showan N. Nazhat

Bioactive glasses have long been investigated in mineralized tissue regeneration, but recently their potential applications in soft tissue repair, and in particular wound healing, have demonstrated great promise.


Author(s):  
Usanee Pantulap ◽  
Marcela Arango-Ospina ◽  
Aldo R. Boccaccini

AbstractBioactive glasses (BGs) have been a focus of research for over five decades for several biomedical applications. Although their use in bone substitution and bone tissue regeneration has gained important attention, recent developments have also seen the expansion of BG applications to the field of soft tissue engineering. Hard and soft tissue repair therapies can benefit from the biological activity of metallic ions released from BGs. These metallic ions are incorporated in the BG network not only for their biological therapeutic effects but also in many cases for influencing the structure and processability of the glass and to impart extra functional properties. The “classical” elements in silicate BG compositions are silicon (Si), phosphorous (P), calcium (Ca), sodium (Na), and potassium (K). In addition, other well-recognized biologically active ions have been incorporated in BGs to provide osteogenic, angiogenic, anti-inflammatory, and antibacterial effects such as zinc (Zn), magnesium (Mg), silver (Ag), strontium (Sr), gallium (Ga), fluorine (F), iron (Fe), cobalt (Co), boron (B), lithium (Li), titanium (Ti), and copper (Cu). More recently, rare earth and other elements considered less common or, some of them, even “exotic” for biomedical applications, have found room as doping elements in BGs to enhance their biological and physical properties. For example, barium (Ba), bismuth (Bi), chlorine (Cl), chromium (Cr), dysprosium (Dy), europium (Eu), gadolinium (Gd), ytterbium (Yb), thulium (Tm), germanium (Ge), gold (Au), holmium (Ho), iodine (I), lanthanum (La), manganese (Mn), molybdenum (Mo), nickel (Ni), niobium (Nb), nitrogen (N), palladium (Pd), rubidium (Rb), samarium (Sm), selenium (Se), tantalum (Ta), tellurium (Te), terbium (Tb), erbium (Er), tin (Sn), tungsten (W), vanadium (V), yttrium (Y) as well as zirconium (Zr) have been included in BGs. These ions have been found to be particularly interesting for enhancing the biological performance of doped BGs in novel compositions for tissue repair (both hard and soft tissue) and for providing, in some cases, extra functionalities to the BG, for example fluorescence, luminescence, radiation shielding, anti-inflammatory, and antibacterial properties. This review summarizes the influence of incorporating such less-common elements in BGs with focus on tissue engineering applications, usually exploiting the bioactivity of the BG in combination with other functional properties imparted by the presence of the added elements.


2006 ◽  
Vol 30 (4) ◽  
pp. 233-236 ◽  
Author(s):  
Sarunas Tarasevicius ◽  
Uldis Kesteris ◽  
Romas Jonas Kalesinskas ◽  
Hans Wingstrand

2018 ◽  
Author(s):  
Jonathan S. Friedstat ◽  
Michelle R Coriddi ◽  
Eric G Halvorson ◽  
Joseph J Disa

Wound management and soft-tissue repair can vary depending on the location. The head and neck, chest and back, arm and forearm, hand, abdomen, gluteal area and perineum, thigh, knee, lower leg, and foot all have different local options and preferred free flaps to use for reconstruction. Secondary reconstruction requires a detailed analysis of all aspects of the wound including any scars, soft tissue and/or skin deficits, functional defects, contour defects, complex or composite defects, and/or unstable previous wound coverage. Careful monitoring of both the patient and reconstruction is necessary in the postoperative period to ensure long-term success.   This review contains 2 figures and 17 references. Key Words: free tissue transfer, pedicle flaps, soft-tissue coverage, wound closure, wound healing, wound management, wound reconstruction, tissue flaps


2017 ◽  
Vol 32 (3) ◽  
pp. 141-148 ◽  
Author(s):  
Kathryn E. Smith ◽  
Mateo Garcia ◽  
Kenneth M. Dupont ◽  
Geoffrey B. Higgs ◽  
Ken Gall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document