Bioactive glasses in wound healing: hope or hype?

2017 ◽  
Vol 5 (31) ◽  
pp. 6167-6174 ◽  
Author(s):  
Shiva Naseri ◽  
William C. Lepry ◽  
Showan N. Nazhat

Bioactive glasses have long been investigated in mineralized tissue regeneration, but recently their potential applications in soft tissue repair, and in particular wound healing, have demonstrated great promise.

2016 ◽  
Vol 4 (11) ◽  
pp. 1682-1690 ◽  
Author(s):  
Hongye Hao ◽  
Jingyu Shao ◽  
Ya Deng ◽  
Shan He ◽  
Feng Luo ◽  
...  

Light-crosslinking waterborne polyurethanes (LWPUs) based on lysine possess appropriate elasticity for soft tissue repair, and can induce macrophages into a wound healing phenotype.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Reza Aramideh Khouy ◽  
Ali Nosrati ◽  
Mohammad Khodaei ◽  
Mehdi Banitalebi-Dehkordi ◽  
...  

AbstractSkin is the body’s first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


2006 ◽  
Vol 30 (4) ◽  
pp. 233-236 ◽  
Author(s):  
Sarunas Tarasevicius ◽  
Uldis Kesteris ◽  
Romas Jonas Kalesinskas ◽  
Hans Wingstrand

2018 ◽  
Author(s):  
Jonathan S. Friedstat ◽  
Michelle R Coriddi ◽  
Eric G Halvorson ◽  
Joseph J Disa

Wound management and soft-tissue repair can vary depending on the location. The head and neck, chest and back, arm and forearm, hand, abdomen, gluteal area and perineum, thigh, knee, lower leg, and foot all have different local options and preferred free flaps to use for reconstruction. Secondary reconstruction requires a detailed analysis of all aspects of the wound including any scars, soft tissue and/or skin deficits, functional defects, contour defects, complex or composite defects, and/or unstable previous wound coverage. Careful monitoring of both the patient and reconstruction is necessary in the postoperative period to ensure long-term success.   This review contains 2 figures and 17 references. Key Words: free tissue transfer, pedicle flaps, soft-tissue coverage, wound closure, wound healing, wound management, wound reconstruction, tissue flaps


2017 ◽  
Vol 32 (3) ◽  
pp. 141-148 ◽  
Author(s):  
Kathryn E. Smith ◽  
Mateo Garcia ◽  
Kenneth M. Dupont ◽  
Geoffrey B. Higgs ◽  
Ken Gall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document