A Review of Supercapacitor Energy Storage Using Nanohybrid Conducting Polymers and Carbon Electrode Materials

Author(s):  
Punya A. Basnayaka ◽  
Manoj K. Ram
Fuel ◽  
2020 ◽  
Vol 282 ◽  
pp. 118796 ◽  
Author(s):  
Binoy K. Saikia ◽  
Santhi Maria Benoy ◽  
Mousumi Bora ◽  
Joyshil Tamuly ◽  
Mayank Pandey ◽  
...  

1996 ◽  
Vol 8 (4) ◽  
pp. 331-334 ◽  
Author(s):  
Marina Mastragostino ◽  
Catia Arbizzani ◽  
Luca Meneghello ◽  
Ruggero Paraventi

2018 ◽  
Vol 930 ◽  
pp. 597-602 ◽  
Author(s):  
Tayara Correia Gonsalves ◽  
Franks Martins Silva ◽  
Ligia Silverio Vieira ◽  
Julio Cesar Serafim Casini ◽  
Rubens Nunes de Faria

In recent years, extensive investigations have focused on the study and improvement of supercapacitor electrode materials. The electric devices produced with these materials are used to store energy over time periods ranging from seconds to several days. The main factor that determines the energy storage period of a supercapacitor is its self-discharge rate, i.e., the gradual decrease in electric potential that occurs when the supercapacitor terminals are not connected to either a charging circuit or electric load. Self-discharge is attenuated at lower temperatures, resulting in an increased energy storage period. This paper addresses the temperature-dependence of self-discharge via a systematic study of supercapacitors with nominal capacitances of 1.0 and 10.0 F at DC potentials of 5.5 and 2.7 V, respectively. The specific capacitances, internal resistances, and self-discharge characteristics of commercial activated carbon electrode supercapacitors were investigated. Using cyclic voltammetry, the specific capacitances were determined to be 44.4 and 66.7 Fg−1 for distinct carbon electrode supercapacitors. The self-discharge characteristics were investigated at both room temperature and close to the freezing point. The internal resistances of the supercapacitors were calculated using the discharge curves at room temperature. The microstructures of the electrode materials were determined using scanning electron microscopy.


2019 ◽  
Vol 5 (2) ◽  
pp. 18 ◽  
Author(s):  
Johara Al Dream ◽  
Camila Zequine ◽  
K. Siam ◽  
Pawan K. Kahol ◽  
S. R. Mishra ◽  
...  

Graphene is a highly studied material due to its unique electrical, optical, and mechanical properties. Graphene is widely applied in the field of energy such as in batteries, supercapacitors, and solar cells. The properties of graphene can be further improved by making nanocomposites with conducting polymers. In this work, graphene oxide nanoribbons (GONRs) were synthesized by unzipping multiwall carbon nanotubes. Graphene nanoribbons were used to make nanocomposites with polypyrrole for energy storage applications. The synthesized nanocomposites were structurally and electrochemically characterized to understand their structure and electrochemical properties. The electrochemical characterizations of these nanocomposites were carried out using cyclic voltammetry. The specific capacitance of the nanocomposites was observed to decrease with increasing scan rates. The highest specific capacitance of 2066 F/g was observed using cyclic voltammetry for the optimized nanocomposite of GONR and polypyrrole. Our study suggests that the electrochemical properties of graphene or polypyrrole can be improved by making their composites and that they could be successfully used as electrode materials for energy storage applications. This study can also be extended to the self-assembly of other conducting polymers and graphene nanoribbons through a simple route for various other applications.


Sign in / Sign up

Export Citation Format

Share Document