scholarly journals Electrochemical Properties of Graphene Oxide Nanoribbons/Polypyrrole Nanocomposites

2019 ◽  
Vol 5 (2) ◽  
pp. 18 ◽  
Author(s):  
Johara Al Dream ◽  
Camila Zequine ◽  
K. Siam ◽  
Pawan K. Kahol ◽  
S. R. Mishra ◽  
...  

Graphene is a highly studied material due to its unique electrical, optical, and mechanical properties. Graphene is widely applied in the field of energy such as in batteries, supercapacitors, and solar cells. The properties of graphene can be further improved by making nanocomposites with conducting polymers. In this work, graphene oxide nanoribbons (GONRs) were synthesized by unzipping multiwall carbon nanotubes. Graphene nanoribbons were used to make nanocomposites with polypyrrole for energy storage applications. The synthesized nanocomposites were structurally and electrochemically characterized to understand their structure and electrochemical properties. The electrochemical characterizations of these nanocomposites were carried out using cyclic voltammetry. The specific capacitance of the nanocomposites was observed to decrease with increasing scan rates. The highest specific capacitance of 2066 F/g was observed using cyclic voltammetry for the optimized nanocomposite of GONR and polypyrrole. Our study suggests that the electrochemical properties of graphene or polypyrrole can be improved by making their composites and that they could be successfully used as electrode materials for energy storage applications. This study can also be extended to the self-assembly of other conducting polymers and graphene nanoribbons through a simple route for various other applications.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 624 ◽  
Author(s):  
Alina Iuliana Pruna ◽  
Nelly Ma. Rosas-Laverde ◽  
David Busquets Mataix

Graphene oxide (GO)-modified polypyrrole (PPy) coatings were obtained by electrochemical methods in the presence of the anionic surfactant, sodium dodecyl sulfate (SDS). The structure, morphology, and electrochemical properties of the coatings were assessed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM) and cyclic voltammetry at varying scan rates, respectively. The properties of the obtained coatings were analyzed with the GO and PPy loadings and electrodeposition mode. The hybrid coatings obtained galvanostatically showed a coarser appearance than those deposited by cyclic voltammetry CV mode and improved performance, respectively, which was further enhanced by GO and PPy loading. The capacitance enhancement can be attributed to the SDS surfactant that well dispersed the GO sheets, thus allowing the use of lower GO content for improved contribution, while the choice of suitable electrodeposition parameters is highly important for improving the applicability of GO-modified PPy coatings in energy storage applications.


2016 ◽  
Vol 52 (5) ◽  
pp. 946-949 ◽  
Author(s):  
Bendi Ramaraju ◽  
Cheng-Hung Li ◽  
Sengodu Prakash ◽  
Chia-Chun Chen

Cuox–rGO composite was synthesized by sintering a Cu-based metal–organic framework (Cu-MOF) embedded with exfoliated graphene oxide. The obtained material delivers an excellent electrochemical properties with stable cycling performance as an anode material in rechargeable batteries.


RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 27801-27811
Author(s):  
M. Vandana ◽  
Y. S. Nagaraju ◽  
H. Ganesh ◽  
S. Veeresh ◽  
H. Vijeth ◽  
...  

Representation of the synthesis steps of SnO2QDs/GO/PPY ternary composites and SnO2QDs/GO/PPY//GO/charcoal asymmetric supercapacitor device.


Author(s):  
Linlin Liu ◽  
Zhen Ji ◽  
Shuyan Zhao ◽  
Qingyuan Niu ◽  
Songqi Hu

The delignified wood-based self-supporting carbon material is an ideal basic interdigital flexible electrode material, which has good application potential.


2021 ◽  
Vol 50 (13) ◽  
pp. 4643-4650
Author(s):  
Miao He ◽  
Yi He ◽  
Xinyi Zhou ◽  
Qiang Hu ◽  
Shixiang Ding ◽  
...  

The device exhibits 95.3% retention in specific capacitance after 5000 cycles and possesses superior energy-storage capacity.


Nanoscale ◽  
2021 ◽  
Author(s):  
Hang Zhang ◽  
Xuemin Wang ◽  
Zhengzheng Li ◽  
Cui Zhang ◽  
Shuangxi Liu

Transition-metal selenides are capturing eminence as promising electrode materials for energy storage applications owing to their low electronegativity and environment-friendly compared with metal sulfides/oxides. Herein, a CuCoSe@NC nanocomposite with copper-cobalt...


2020 ◽  
Author(s):  
Marco Amores ◽  
Keisuke Wada ◽  
Ken Sakaushi ◽  
Hiroshi Nishihara

Coordination polymers represent a suitable model to study redox mechanisms in materials where both metal cation and ligand undergo electrochemical reactions and are capable to proceed through reversible multielectron-transfer processes with insertion of cation and anion into their open structures. Designing new coordination polymers for electrochemical energy storage with improved performance relays also on the understanding of their structure-properties relationship. Here, we present a family of copper-based coordination polymer with hexafunctionalized benzene ligands forming a kagome-type layered structure, where the in uence of the functional groups in their structure and electrochemical properties is investigated. Their chemical and structural properties have been explored by means of PXRD, and FTIR and Raman spectroscopies, followed by investigation of their electrochemical performance in Li half-cells by CV and galvanostatic cycling techniques. Ex-situ PXRD, Raman, XPS and ToF-SIMS measurements of cycled electrodes have been carried out providing insights into the redox mechanism of these copper-based coordination polymers as positive electrode materials.<br>


2014 ◽  
Vol 2 (47) ◽  
pp. 20345-20357 ◽  
Author(s):  
Anil Kumar ◽  
Mahima Khandelwal

Novel ultrathin graphene sheets (0.41 ± 0.03 nm) with increased sp2 character, high specific capacitance and charge–discharge capability have been synthesized and demonstrated to have potential energy storage applications.


Sign in / Sign up

Export Citation Format

Share Document