Degradation Behavior of Mg-Ca Nail after Penetration into Artificial Bone

2015 ◽  
pp. 399-402 ◽  
Author(s):  
Naoko Ikeo ◽  
Junichi Shimizu ◽  
Chihiro Ishigaki ◽  
Yuya Sano ◽  
Yoshinaka Shimizu ◽  
...  
2015 ◽  
pp. 399-402 ◽  
Author(s):  
Naoko Ikeo ◽  
Junichi Shimizu ◽  
Chihiro Ishigaki ◽  
Yuya Sano ◽  
Yoshinaka Shimizu ◽  
...  

2019 ◽  
Vol 9 (4) ◽  
pp. 739 ◽  
Author(s):  
Kun Yu ◽  
Limin Ren ◽  
Yisong Tan ◽  
Junyao Wang

A magnetoelasticity-based (MB) sensor was employed for monitoring the degradation behavior of polylactic acid (PLA) artificial bone (PAB) in vitro, which can be used as an implant to repair bone defects. Biodegradable PLA material was coated on both sides of the MB sensor strip with a 3D printer, forming PAB. The PAB samples were submerged in an alkaline medium (pH = 12) and a neutral phosphate-buffered saline (PBS) medium (pH = 7.4). The degradation behavior of the PAB was monitored wirelessly based on changes in the output power of the MB sensor. The results indicated that the output power varied by almost 0.2 and 0.11 dbm over 15 days in the two media. The degradation behavior monitored by the MB sensor agreed with the theoretical analysis. The MB sensor provides a wireless method for monitoring the degradation behavior of PAB in vitro and requires few samples at a lower cost. Importantly, the results showed that biological tissues had almost no effect on the monitoring function of the MB sensor. Therefore, the MB sensor technology is highly attractive for fully characterizing the degradation behavior of bone implants in a larger range of physiological conditions, and will be applied to monitor the degradation behavior in vivo.


2019 ◽  
Vol 35 (3) ◽  
pp. 329-340 ◽  
Author(s):  
YI CHEN ◽  
◽  
WENQIN HE ◽  
SHIQI CHEN ◽  
JIANGBO WANG ◽  
...  

2013 ◽  
Vol 51 (10) ◽  
pp. 729-734 ◽  
Author(s):  
Seol Jeon ◽  
Youngkue Choi ◽  
Hyun-Gyoo Shin ◽  
Hyun Park ◽  
Heesoo Lee ◽  
...  

2020 ◽  
Vol 8 (9) ◽  
pp. 2000241
Author(s):  
Muhammad Shirjeel Khan ◽  
Xiaoyong Xu ◽  
Ruth Knibbe ◽  
Ateeq ur Rehman ◽  
Zhiheng Li ◽  
...  

Chemosphere ◽  
2008 ◽  
Vol 71 (2) ◽  
pp. 345-351 ◽  
Author(s):  
Jian Lu ◽  
Qiang Jin ◽  
Yiliang He ◽  
Jun Wu ◽  
Wenying Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lijia Cheng ◽  
Tianchang Lin ◽  
Ahmad Taha Khalaf ◽  
Yamei Zhang ◽  
Hongyan He ◽  
...  

AbstractNowadays, artificial bone materials have been widely applied in the filling of non-weight bearing bone defects, but scarcely ever in weight-bearing bone defects. This study aims to develop an artificial bone with excellent mechanical properties and good osteogenic capability. Firstly, the collagen-thermosensitive hydrogel-calcium phosphate (CTC) composites were prepared as follows: dissolving thermosensitive hydrogel at 4 °C, then mixing with type I collagen as well as tricalcium phosphate (CaP) powder, and moulding the composites at 37 °C. Next, the CTC composites were subjected to evaluate for their chemical composition, micro morphology, pore size, Shore durometer, porosity and water absorption ability. Following this, the CTC composites were implanted into the muscle of mice while the 70% hydroxyapatite/30% β-tricalcium phosphate (HA/TCP) biomaterials were set as the control group; 8 weeks later, the osteoinductive abilities of biomaterials were detected by histological staining. Finally, the CTC and HA/TCP biomaterials were used to fill the large segments of tibia defects in mice. The bone repairing and load-bearing abilities of materials were evaluated by histological staining, X-ray and micro-CT at week 8. Both the CTC and HA/TCP biomaterials could induce ectopic bone formation in mice; however, the CTC composites tended to produce larger areas of bone and bone marrow tissues than HA/TCP. Simultaneously, bone-repairing experiments showed that HA/TCP biomaterials were easily crushed or pushed out by new bone growth as the material has a poor hardness. In comparison, the CTC composites could be replaced gradually by newly formed bone and repair larger segments of bone defects. The CTC composites trialled in this study have better mechanical properties, osteoinductivity and weight-bearing capacity than HA/TCP. The CTC composites provide an experimental foundation for the synthesis of artificial bone and a new option for orthopedic patients.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jungang Li ◽  
Chaoqian Zhao ◽  
Chun Liu ◽  
Zhenyu Wang ◽  
Zeming Ling ◽  
...  

Abstract Background The bone regeneration of artificial bone grafts is still in need of a breakthrough to improve the processes of bone defect repair. Artificial bone grafts should be modified to enable angiogenesis and thus improve osteogenesis. We have previously revealed that crystalline Ca10Li(PO4)7 (CLP) possesses higher compressive strength and better biocompatibility than that of pure beta-tricalcium phosphate (β-TCP). In this work, we explored the possibility of cobalt (Co), known for mimicking hypoxia, doped into CLP to promote osteogenesis and angiogenesis. Methods We designed and manufactured porous scaffolds by doping CLP with various concentrations of Co (0, 0.1, 0.25, 0.5, and 1 mol%) and using 3D printing techniques. The crystal phase, surface morphology, compressive strength, in vitro degradation, and mineralization properties of Co-doped and -undoped CLP scaffolds were investigated. Next, we investigated the biocompatibility and effects of Co-doped and -undoped samples on osteogenic and angiogenic properties in vitro and on bone regeneration in rat cranium defects. Results With increasing Co-doping level, the compressive strength of Co-doped CLP scaffolds decreased in comparison with that of undoped CLP scaffolds, especially when the Co-doping concentration increased to 1 mol%. Co-doped CLP scaffolds possessed excellent degradation properties compared with those of undoped CLP scaffolds. The (0.1, 0.25, 0.5 mol%) Co-doped CLP scaffolds had mineralization properties similar to those of undoped CLP scaffolds, whereas the 1 mol% Co-doped CLP scaffolds shown no mineralization changes. Furthermore, compared with undoped scaffolds, Co-doped CLP scaffolds possessed excellent biocompatibility and prominent osteogenic and angiogenic properties in vitro, notably when the doping concentration was 0.25 mol%. After 8 weeks of implantation, 0.25 mol% Co-doped scaffolds had markedly enhanced bone regeneration at the defect site compared with that of the undoped scaffold. Conclusion In summary, CLP doped with 0.25 mol% Co2+ ions is a prospective method to enhance osteogenic and angiogenic properties, thus promoting bone regeneration in bone defect repair.


2021 ◽  
Vol 183 ◽  
pp. 109441 ◽  
Author(s):  
Wei-Hsuan Wang ◽  
Chieh-Wei Huang ◽  
Erh-Yeh Tsou ◽  
Wei-Sam Ao-Ieong ◽  
Hui-Ching Hsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document