Enhanced Diversity Herds Grey Wolf Optimizer for Optimal Area Coverage in Wireless Sensor Networks

Author(s):  
Chin-Shiuh Shieh ◽  
Trong-The Nguyen ◽  
Hung-Yu Wang ◽  
Thi-Kien Dao
2019 ◽  
Vol 13 ◽  
pp. 174830261988949 ◽  
Author(s):  
Zhendong Wang ◽  
Huamao Xie ◽  
Zhongdong Hu ◽  
Dahai Li ◽  
Junling Wang ◽  
...  

Aiming at the problem of wireless sensor network node coverage optimization with obstacles in the monitoring area, based on the grey wolf optimizer algorithm, this paper proposes an improved grey wolf optimizer (IGWO) algorithm to improve the shortcomings of slow convergence, low search precision, and easy to fall into local optimum. Firstly, the nonlinear convergence factor is designed to balance the relationship between global search and local search. The elite strategy is introduced to protect the excellent individuals from being destroyed as the iteration proceeds. The original weighting strategy is improved, so that the leading wolf can guide the remaining grey wolves to prey in a more reasonable way. The design of the grey wolf’s boundary position strategy and the introduction of dynamic variation strategy enrich the population diversity and enhance the ability of the algorithm to jump out of local optimum. Then, the benchmark function is used to test the convergence performance of genetic algorithm, particle swarm optimization, grey wolf optimizer, and IGWO algorithm, which proves that the convergence performance of IGWO algorithm is better than the other three algorithms. Finally, the IGWO algorithm is applied to the deployment of wireless sensor networks with obstacles (rectangular obstacle, trapezoidal obstacle and triangular obstacles). Simulation results show that compared with GWO algorithm, IGWO algorithm can effectively improve the coverage of wireless sensor network nodes and obtain higher coverage rate with fewer nodes, thereby reducing the cost of deploying the network.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yong Zhang ◽  
Li Cao ◽  
Yinggao Yue ◽  
Yong Cai ◽  
Bo Hang

The coverage optimization problem of wireless sensor network has become one of the hot topics in the current field. Through the research on the problem of coverage optimization, the coverage of the network can be improved, the distribution redundancy of the sensor nodes can be reduced, the energy consumption can be reduced, and the network life cycle can be prolonged, thereby ensuring the stability of the entire network. In this paper, a novel grey wolf algorithm optimized by simulated annealing is proposed according to the problem that the sensor nodes have high aggregation degree and low coverage rate when they are deployed randomly. Firstly, the mathematical model of the coverage optimization of wireless sensor networks is established. Secondly, in the process of grey wolf optimization algorithm, the simulated annealing algorithm is embedded into the grey wolf after the siege behavior ends and before the grey wolf is updated to enhance the global optimization ability of the grey wolf algorithm and at the same time improve the convergence rate of the grey wolf algorithm. Simulation experiments show that the improved grey wolf algorithm optimized by simulated annealing is applied to the coverage optimization of wireless sensor networks. It has better effect than particle swarm optimization algorithm and standard grey wolf optimization algorithm, has faster optimization speed, improves the coverage of the network, reduces the energy consumption of the nodes, and prolongs the network life cycle.


2020 ◽  
pp. 1580-1600
Author(s):  
Subhendu Kumar Pani

A wireless sensor network may contain hundreds or even tens of thousands of inexpensive sensor devices that can communicate with their neighbors within a limited radio range. By relaying information on each other, they transmit signals to a command post anywhere within the network. Worldwide market for wireless sensor networks is rapidly growing due to a huge variety of applications it offers. In this chapter, we discuss application of computational intelligence techniques in wireless sensor networks on the coverage problem in general and area coverage in particular. After providing different types of coverage encountered in WSN, we present a possible classification of coverage algorithms. Then we dwell on area coverage which is widely studied due to its importance. We provide a survey of literature on area coverage and give an account of its state-of-the art and research directions.


Author(s):  
Subhendu Kumar Pani

A wireless sensor network may contain hundreds or even tens of thousands of inexpensive sensor devices that can communicate with their neighbors within a limited radio range. By relaying information on each other, they transmit signals to a command post anywhere within the network. Worldwide market for wireless sensor networks is rapidly growing due to a huge variety of applications it offers. In this chapter, we discuss application of computational intelligence techniques in wireless sensor networks on the coverage problem in general and area coverage in particular. After providing different types of coverage encountered in WSN, we present a possible classification of coverage algorithms. Then we dwell on area coverage which is widely studied due to its importance. We provide a survey of literature on area coverage and give an account of its state-of-the art and research directions.


Sign in / Sign up

Export Citation Format

Share Document