improved grey wolf optimizer
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 32)

H-INDEX

5
(FIVE YEARS 3)

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3178
Author(s):  
Pu Lan ◽  
Kewen Xia ◽  
Yongke Pan ◽  
Shurui Fan

In this study, a model based on the improved grey wolf optimizer (GWO) for optimizing RVFL is proposed to enable the problem of poor accuracy of Oil layer prediction due to the randomness of the parameters present in the random vector function link (RVFL) model to be addressed. Firstly, GWO is improved based on the advantages of chaos theory and the marine predator algorithm (MPA) to overcome the problem of low convergence accuracy in the optimization process of the GWO optimization algorithm. The improved GWO algorithm was then used to optimize the input weights and implicit layer biases of the RVFL network model so that the problem of inaccurate and unstable classification of RVFL due to the randomness of the parameters was avoided. MPA-GWO was used for comparison with algorithms of the same type under a function of 15 standard tests. From the results, it was concluded that it outperformed the algorithms of its type in terms of search accuracy and search speed. At the same time, the MPA-GWO-RVFL model was applied to the field of Oil layer prediction. From the comparison tests, it is concluded that the prediction accuracy of the MPA-GWO-RVFL model is on average 2.9%, 3.04%, 2.27%, 8.74%, 1.47% and 10.41% better than that of the MPA-RVFL, GWO-RVFL, PSO-RVFL, WOA-RVFL, GWFOA-RVFL and RVFL algorithms, respectively, and its practical applications are significant.


2021 ◽  
Vol 11 (19) ◽  
pp. 9081
Author(s):  
Changpeng Li ◽  
Tianhao Peng ◽  
Yanmin Zhu

When the shearer is cutting, the sound signal generated by the cutting drum crushing coal and rock contains a wealth of cutting status information. In order to effectively process the shearer cutting sound signal and accurately identify the cutting mode, this paper proposed a shearer cutting sound signal recognition method based on an improved complete ensemble empirical mode decomposition with adaptive noise (ICCEMDAN) and an improved grey wolf optimizer (IGWO) algorithm-optimized support vector machine (SVM). First, the approach applied ICEEMDAN to process the cutting sound signal and obtained several intrinsic mode function (IMF) components. It used the correlation coefficient to select the characteristic component. Meanwhile, this paper calculated the composite multi-scale permutation entropy (CMPE) of the characteristic components as the eigenvalue. Then, the method introduced a differential evolution algorithm and nonlinear convergence factor to improve the GWO algorithm. It used the improved GWO algorithm to realize the adaptive selection of SVM parameters and established a cutting sound signal recognition model. According to the proportioning plan, the paper made several simulation coal walls for cutting experiments and collected cutting sound signals for cutting pattern recognition. The experimental results show that the method proposed in this paper can effectively process the cutting sound signal of the shearer, and the average accuracy of the cutting pattern recognition model reached 97.67%.


2021 ◽  
Vol 146 (1-2) ◽  
pp. 833-849
Author(s):  
Ali Kozekalani Sales ◽  
Enes Gul ◽  
Mir Jafar Sadegh Safari ◽  
Hadi Ghodrat Gharehbagh ◽  
Babak Vaheddoost

Sign in / Sign up

Export Citation Format

Share Document