The Effect of Chemical Composition and Structure on the Corrosion Resistance of Plated Aluminium Alloy Strips

2012 ◽  
pp. 451-457
Author(s):  
Andrzej Klyszewski ◽  
Janusz Zelechowski ◽  
Mieczyslaw Opyrchal ◽  
Marek Nowak ◽  
Andrzej Frontczak ◽  
...  
Author(s):  
Andrzej Klyszewski ◽  
Janusz Zelechowski ◽  
Mieczyslaw Opyrchal ◽  
Marek Nowak ◽  
Andrzej Frontczak ◽  
...  

2003 ◽  
Vol 45 (9/10) ◽  
pp. 385-389 ◽  
Author(s):  
A. V. Elistratov ◽  
V. M. Blinov ◽  
A. G. Rakhshtadt ◽  
A. A. Aliev ◽  
A. N. Malofeeva ◽  
...  

2021 ◽  
Vol 346 ◽  
pp. 02043
Author(s):  
Vladimir Fedyaev ◽  
Engel Galimov ◽  
Alexey Belyaev ◽  
Liliya Sirotkina

The durability of polymer powder coatings is considered. The features of the impact on coatings during their operation of the environment, loads from the side of the substrate on the surface of its contact with the coatings, parameters that depend on the chemical composition and structure of the coating material are briefly analyzed. The thickness of the coating stands out as the main indicators of durability; a function that characterizes the continuity, strength, corrosion resistance, and its other properties; adhesive strength. It is proposed to use a generalized (integral) criterion for a comprehensive accounting of these indicators. An equation is written to assess the durability of the considered coatings, in a particular case, a formula is given for calculating their permissible operating time.


2016 ◽  
Vol 10 (4s) ◽  
pp. 595-600 ◽  
Author(s):  
Witold Brostow ◽  
◽  
Haley E. Hagg Lobland ◽  

The property of brittleness for polymers and polymer-based materials (PBMs) is an important factor in determining the potential uses of a material. Brittleness of polymers may also impact the ease and modes of polymer processing, thereby affecting economy of production. Brittleness of PBMs can be correlated with certain other properties and features of polymers; to name a few, connections to free volume, impact strength, and scratch recovery have been explored. A common thread among all such properties is their relationship to chemical composition and morphology. Through a survey of existing literature on polymer brittleness specifically combined with relevant reports that connect additional materials and properties to that of brittleness, it is possible to identify chemical features of PBMs that are connected with observable brittle behavior. Relations so identified between chemical composition and structure of PBMs and brittleness are described herein, advancing knowledge and improving the capacity to design new and to choose among existing polymers in order to obtain materials with particular property profiles.


2020 ◽  
pp. 34-39
Author(s):  
Aneta Antczak-Chrobot ◽  
Maciej Wojtczak

In this research paper, development of a procedure of isolation of exopolysaccharides from frost-damaged beet and an analysis of structural and chemical composition of polymers isolated from sugar beet of different origin are presented. Total acid hydrolysis degradation integrated with HPAEC-ED analysis has been utilized to confirm the monomeric composition of the separated polysaccharides. The implementation of NMR spectral analysis and SEC chromatography of the structure of exopolysaccharides has been investigated. The results demonstrate that the chemical composition and structure of exopolysaccharides depend on their origin. Typical exopolysaccharides from Central European beet roots consist mainly of glucose monomers – and they have low branched structure – about 90% of α-1,6 linkage which is typical for dextran. The exopolysaccharides isolated from Swedish beet are characterized by 50–60% fructose monomers. They contain only about 65% α-1,6 linkages. Exopolysaccharides extracted from various origin beet differ in average molecular mass. The molecular distribution is not normal.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1581
Author(s):  
Rafał Babilas ◽  
Monika Spilka ◽  
Katarzyna Młynarek ◽  
Wojciech Łoński ◽  
Dariusz Łukowiec ◽  
...  

The effect of iron and yttrium additions on glass forming ability and corrosion resistance of Al88Y8-xFe4+x (x = 0, 1, 2 at.%) alloys in the form of ingots and melt-spun ribbons was investigated. The crystalline multiphase structure of ingots and amorphous-crystalline structure of ribbons were examined by a number of analytical techniques including X-ray diffraction, Mössbauer spectroscopy, and transmission electron microscopy. It was confirmed that the higher Fe additions contributed to formation of amorphous structures. The impact of chemical composition and structure of alloys on their corrosion resistance was characterized by electrochemical tests in 3.5% NaCl solution at 25 °C. The identification of the mechanism of chemical reactions taking place during polarization test along with the morphology and internal structure of the surface oxide films generated was performed. It was revealed that the best corrosion resistance was achieved for the Al88Y7Fe5 alloy in the form of ribbon, which exhibited the lowest corrosion current density (jcorr = 0.09 μA/cm2) and the highest polarization resistance (Rp = 96.7 kΩ∙cm2).


Sign in / Sign up

Export Citation Format

Share Document