Modelling of Double-Pendulum Based Energy Harvester for Railway Wagon

Author(s):  
Vytautas Bučinskas ◽  
Andrius Dzedzickis ◽  
Nikolaj Šešok ◽  
Ernestas Šutinys ◽  
Igor Iljin
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Faiz Basheer ◽  
Elmehaisi Mehaisi ◽  
Ahmed Elsergany ◽  
Ahmed ElSheikh ◽  
Mehdi Ghommem ◽  
...  

AbstractAn exclusive reliance on batteries for miniature sensors has created the need for a self-sustained energy harvester to enable permanent power. This work introduces a pendulum-based energy harvester that is capable of harnessing kinetic energy from rotating structures to generate electric power through electromagnetic transduction. A computational model of the energy harvesting device is developed on Simscape to compute, analyze and compare the power generation capacities of the single, double and Rott’s pendulum systems. Simulation results are validated against their experimental counterparts reported in the literature. Results show an increase in the output voltage in a specific range of rotational speed for all three pendulum harvesters. The double pendulum exhibits the highest power generation potential among the simulated pendulum arrangements. A parametric study revealed that increasing the damping of the harvester decreased its output power, whereas an increase in mass and length of the harvester is observed to increase the output power and shift the optimal power generation subrange.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2013 ◽  
Vol 133 (4) ◽  
pp. 126-127 ◽  
Author(s):  
Shota Hosokawa ◽  
Motoaki Hara ◽  
Hiroyuki Oguchi ◽  
Hiroki Kuwano

2018 ◽  
Vol 138 (9) ◽  
pp. 401-405
Author(s):  
Yu-Fan Chen ◽  
Satoshi Inoue ◽  
Hiroshi Toshiyoshi
Keyword(s):  

2018 ◽  
Vol 138 (5) ◽  
pp. 185-190
Author(s):  
Meng Su ◽  
Dai Kobayashi ◽  
Nobuyuki Takama ◽  
Beomjoon Kim

2015 ◽  
Vol 135 (9) ◽  
pp. 372-373 ◽  
Author(s):  
Koji Sonoda ◽  
Keidai Minami ◽  
Naoki Miwatani ◽  
Kensuke Kanda ◽  
Takayuki Fujita ◽  
...  

2017 ◽  
Vol 137 (6) ◽  
pp. 152-158
Author(s):  
Satoshi Inoue ◽  
Takuya Takahashi ◽  
Momoko Kumemura ◽  
Kazunori Ishibashi ◽  
Hiroyuki Fujita ◽  
...  

Author(s):  
João Pedro Canisso Valese Norenberg ◽  
Marcus Varanis ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset

Sign in / Sign up

Export Citation Format

Share Document