Water Deficit Estimation Under Climate Change and Irrigation Conditions in the Fergana Valley, Central Asia

Author(s):  
Elena Milanova ◽  
Aleksandra Nikanorova ◽  
Andrei Kirilenko ◽  
Nikolay Dronin
2016 ◽  
Vol 6 (4) ◽  
pp. 260-267 ◽  
Author(s):  
A. D. Nikanorova ◽  
E. V. Milanova ◽  
N. M. Dronin ◽  
N. O. Telnova

2015 ◽  
Vol 1 (1,2) ◽  
pp. 119-128 ◽  
Author(s):  
Chitresh Saraswat ◽  
Pankaj Kumar ◽  
Dinara Kem ◽  
Ram Avtar ◽  
AL. Ramanathan

10.1596/25983 ◽  
2009 ◽  
Author(s):  
William R. Sutton ◽  
Rachel I. Block ◽  
Jitendra Srivastava

2021 ◽  
Author(s):  
Zarina Saidaliyeva ◽  
Veruska Muccione ◽  
Maria Shahgedanova ◽  
Sophie Bigler ◽  
Carolina Adler

<p>The mountains of Central Asia, extending over 7000 m a.s.l. and accommodating diverse and complex natural and managed systems, are very vulnerable to climate change. They support valuable environmental functions and provide key ecosystem goods and services to the arid downstream regions which strongly depend on the melting snowpack and glaciers for the provision of water by the transboundary rivers starting in the mountains. Strong climate change adaptation (CCA) action is required to increase resilience of the vulnerable, low-income communities in the region. Our knowledge of the CCA actions in the mountains of Central Asia is limited in comparison with other mountainous regions. The aim of this study is to assess the existing adaptation projects and publications and to identify gaps in adaptation efforts by conducting a systematic review of the peer-reviewed literature published in English language. To be selected, the papers had to comply with the following criteria: (i) publication between 2013 and 2019; (ii) explicit focus on CCA in the mountain ranges of Central Asia; (iii) explanation of adaptation options; (vi) a clear methodology of deriving suitable adaptation options. Following the initial screening and subsequent reading of the publications, complying with the specified criteria, 33 peer-reviewed articles were selected for final analysis. This is considerably lower than the number of publications on the European Alps, Hindu-Kush – Himalayas, and the Andes. The number of publications on Central Asian mountains has declined since 2013.</p><p>The research is heavily focused on the problem of water resources, especially water availability at present and in the future 70 % of the analysed papers addressing these issues. These are followed by the papers considering adaptation in agriculture and in managing biodiversity. A critical finding is the lack of publications on adaptation to hazards and disasters including glacier outburst floods, mudflow, and landslides which are common and comparatively well-researched hazards in the Central Asian mountains, experiencing rapid deglaciation. About 50 % of the papers address the transboundary nature of the impacts of climate changes on water resources and land management reflecting the transboundary nature of the Central Asian catchments and the tensions which exist across the region but are especially prominent in the Aral Sea basin.</p><p>We conclude that while there is ample evidence of climate change and its impacts in the mountains of Central Asia and many publications mention the need for adaptation, a very limited number of publications explicitly focus on CCA and how it can be delivered.</p>


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2472 ◽  
Author(s):  
Tianyi Wang ◽  
Chong Du ◽  
Tangzhe Nie ◽  
Zhongyi Sun ◽  
Shijiang Zhu ◽  
...  

Climate change will have a significant effect on crop water requirement (ETc). The spatial and temporal variations of water requirement of maize under climate change are essential elements when conducting a global water security assessment. In this paper, annual reference crop evapotranspiration (ET0) and the crop water requirement of maize were calculated by the single crop coefficient method. The crop water surplus deficit index (CWSDI) and coupling degree of ETc and effective precipitation (Pe) were calculated to analyze the relationship between ETc, ET0, and Pe. The result shows that maize average annual ET0, ETc, and precipitation were 552.97, 383.05, and 264.97 mm, respectively. Moreover, ET0, ETc, and Pe decreased by 3.28, 2.56, and 6.25 mm every decade from 1960 to 2015. The ETc decreased less than Pe did, which led to the decreasing of both CWSDI and the coupling degree of ETc and Pe. The tendency of ET0, ETc decreased first and then increased, while Pe and CWSDI increased first and then decreased, from west to east of the Heilongjiang Province. In addition, the highest ET0, ETc, and lowest CWSDI and Pe were found in the western part of Heilongjiang Province. This study indicated that even though the water deficit in the western region was alleviated and the water deficit in the eastern region grew gradually serious from 1960 to 2015, the drought situation in western Heilongjiang Province should still be taken seriously.


2018 ◽  
Vol 11 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Yang Yu ◽  
Yuanyue Pi ◽  
Xiang Yu ◽  
Zhijie Ta ◽  
Lingxiao Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document