New Development in a Gaussian Puff Model: Consideration of Multiphase Chemical Reactivity During Atmospheric Dispersion

Author(s):  
L. Patryl ◽  
C. Rose ◽  
L. Deguillaume ◽  
N. Chaumerliac ◽  
P. Armand
2021 ◽  
Author(s):  
Bonaventure Fontanier ◽  
Pramod Kumar ◽  
Grégoire Broquet ◽  
Christopher Caldow ◽  
Olivier Laurent ◽  
...  

<p>Methane (CH<sub>4</sub>) is a powerful greenhouse gas which plays a major role in climate change. The accurate monitoring of emissions from industrial facilities is needed to ensure efficient emission mitigation strategies. Local-scale atmospheric inversions are increasingly being used to provide estimates of the rates and/or locations of CH<sub>4</sub> sources from industrial sites. They rely on local-scale atmospheric dispersion models, CH<sub>4</sub> measurements and inversion approaches. Gaussian plume models have often been used for local-scale atmospheric dispersion modelling and inversions of emissions, because of their simplicity and good performance when used in a flat terrain and relatively constant mean wind conditions. However, even in such conditions, failure to account for wind and mole fraction variability can limit the ability to exploit the full potential of these measurements at high frequency.</p><p>We study whether the accuracy of inversions can be increased by the use of more complex dispersion models. Our assessments are based on the analysis of 25 to 75-min CH<sub>4 </sub>controlled releases during a one-week campaign in October 2019 at the TOTAL’s TADI operative platform in Lacq, France (in a flat area). During this campaign, for each controlled release, we conducted near-surface in situ measurements of CH<sub>4</sub> mole fraction from both a mobile vehicle and a circle of fixed points around the emission area. Our inversions based on a Gaussian model and either the mobile or fixed-point measurements both provided estimates of the release rates with 20-30% precision.  </p><p>Here we focus on comparisons between modeling and inversion results when using this Gaussian plume model, a Lagrangian model “GRAL” and a Gaussian puff model. The parameters for the three models are based on high-frequency meteorological values from a single stationary 3D sonic anemometer. GRAL should have relatively good skills under low-wind speed conditions. The Gaussian puff is a light implementation of time-dependent modeling and can be driven by high-frequency meteorological data. The performance of these dispersion models is evaluated with various metrics from the observation field that are relevant for the inversion. These analyses lead to the exploration of new types of definitions of the observational constraint for the inversions with the Gaussian puff model, when using the timeseries from fixed measurement points. The definitions explore a range of metrics in the time domain as well as in the frequency domain.</p><p>Eventually, the Lagrangian model does not outperform the Gaussian plume model in these experiments, its application being notably limited by the short scales of the transport characteristics. On the other hand, the Gaussian puff model provides promising results for the inversion, in particular, in terms of comparison between the simulated and observed timeseries for fixed stations. Its performance when driven by a spatially uniform wind field is an incentive to explore the use of meteorological data from several sonic stations to parameterize its configuration. The fixed-point measurements are shown to allow for more robust inversions of the source location than the mobile measurements, with an average source localization error of the order of 10 m.</p>


1977 ◽  
Vol 11 (5) ◽  
pp. 431-436 ◽  
Author(s):  
F.L. Ludwig ◽  
L.S. Gasiorek ◽  
R.E. Ruff

2009 ◽  
Vol 36 (5) ◽  
pp. 911-922 ◽  
Author(s):  
Timothy J. DeVito ◽  
Xiaoying Cao ◽  
Gilles Roy ◽  
Johnathan R. Costa ◽  
William S. Andrews

A field trial involving 50 separate releases of inert aerosol (kaolin) was conducted to determine the concentration distribution within aerosol puffs resulting from near-instantaneous releases. Atmospheric conditions during the trial fell within Pasquill stability classes A and B (very and moderately unstable, respectively). Aerosol concentration measurements were made using a scanning lidar system operating at 1.06 μm. Artificial neural network (ANN) models were developed using the data to predict concentration distributions, given a number of meteorological parameters. The ANN predictions were compared to those from traditional Gaussian puff models, and provided better predictions than the Gaussian model parameterizations examined. The ANN models were also used to develop Gaussian fitting parameters to replace traditional Pasquill and Slade dispersion coefficients. The ANN-derived dispersion coefficients provided better predictions of measured puff concentration distributions than either the Pasquill or Slade parameterizations, though the full multi-input ANN models provided even better predictions than the Gaussian puff model using ANN-derived dispersion coefficients.


1990 ◽  
Author(s):  
R.P. Addis ◽  
B.L. O`Steen

2013 ◽  
Vol 6 (4) ◽  
pp. 5863-5900
Author(s):  
Y. Kim ◽  
C. Seigneur ◽  
O. Duclaux

Abstract. Plume-in-grid (PinG) models incorporating a host Eulerian model and a subgrid-scale model (usually a Gaussian plume or puff model) have been used for the simulations of stack emissions (e.g., fossil fuel-fired power plants and cement plants) for gaseous and particulate species such as nitrogen oxides (NOx), sulfur dioxide (SO2), particulate matter (PM) and mercury (Hg). Here, we describe the extension of a PinG model to study the impact of an oil refinery where volatile organic compound (VOC) emissions can be important. The model is based on a reactive PinG model for ozone (O3), which incorporates a three-dimensional (3-D) Eulerian model and a Gaussian puff model. The model is extended to treat PM, with treatments of aerosol chemistry, particle size distribution, and the formation of secondary aerosols, which are consistent in both the 3-D Eulerian host model and the Gaussian puff model. Furthermore, the PinG model is extended to include the treatment of volume sources to simulate fugitive VOC emissions. The new PinG model is evaluated over Greater Paris during July 2009. Model performance is satisfactory for O3, PM2.5 and most PM2.5 components. Two industrial sources, a coal-fired power plant and an oil refinery, are simulated with the PinG model. The characteristics of the sources (stack height and diameter, exhaust temperature and velocity) govern the surface concentrations of primary pollutants (NOx, SO2 and VOC). O3 concentrations are impacted differently near the power plant than near the refinery, because of the presence of VOC emissions at the latter. The formation of sulfate is influenced by both the dispersion of SO2 and the oxidant concentration; however, the former tends to dominate in the simulations presented here. The impact of PinG modeling on the formation of secondary organic aerosols (SOA) is small and results mostly from the effect of different oxidant concentrations on biogenic SOA formation. The investigation of the criteria for injecting plumes into the host model (fixed travel time and/or puff size) shows that a size-based criterion is recommended to treat the formation of secondary aerosols (sulfate, nitrate, and ammonium), in particular, farther downwind of the sources (from about 15 km). The impacts of the PinG modeling are less significant in a simulation with a coarse grid size (10 km) than with a fine grid size (2 km), because the concentrations of the species emitted from the PinG sources are relatively less important compared to background concentrations when injected into the host model.


Sign in / Sign up

Export Citation Format

Share Document