scholarly journals Analysis of a Physically Realistic Film Grain Model, and a Gaussian Film Grain Synthesis Algorithm

Author(s):  
Alasdair Newson ◽  
Noura Faraj ◽  
Julie Delon ◽  
Bruno Galerne
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hisaya Tanioka ◽  
Sayaka Tanioka

AbstractAlthough the otolith and otolith organs correlate with vertigo and instability, there is no method to investigate them without harmful procedures. We will create the technique for 3D microanatomical images of them, and investigate the in vivo internal state and metabolisms. The otolith and otolith organs images were reconstructed from a texture synthesis algorithm under the skull volume rendering algorithm using a cutting-plane method. The utricular macula was elongated pea-shaped. The saccular macula was almost bud-shaped. The changes in the amount of CaCO3 in the maculae and the endolymphatic sac showed various morphologies, reflecting the balance status of each subject. Both shapes and volumes were not always constant depending on time. In Meniere’s disease (MD), the saccular macula was larger and the utricular macula was smaller. In benign paroxysmal positional vertigo (BPPV), the otolith increased in the utricular macula but did not change much in the saccular macula. The saccule, utricle, and endolymphatic sac were not constantly shaped according to their conditions. These created 3D microanatomical images can allow detailed observations of changes in physiological and biological information. This imaging technique will contribute to our understanding of pathology and calcium metabolism in the in vivo vestibulum.


Fuel ◽  
2021 ◽  
Vol 293 ◽  
pp. 120389
Author(s):  
Haseen Siddiqui ◽  
Ankita Gupta ◽  
Sanjay M. Mahajani

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2562
Author(s):  
Tomasz Dzitkowski ◽  
Andrzej Dymarek ◽  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
Lukasz Orzech ◽  
...  

A method for selecting dynamic parameters and structures of drive systems using the synthesis algorithm is presented. The dynamic parameters of the system with six degrees of freedom, consisting of a power component (motor) and a two-speed gearbox, were determined, based on a formalized methodology. The required gearbox is to work in specific resonance zones, i.e., meet the required dynamic properties such as the required resonance frequencies. In the result of the tests, a series of parameters of the drive system, defining the required dynamic properties such as the resonance and anti-resonance frequencies were recorded. Mass moments of inertia of the wheels and elastic components, contained in the required structure of the driving system, were determined for the selected parameters obtained during the synthesis.


Author(s):  
Zhizheng Wu ◽  
Foued Ben Amara

Motivated by a class of surface tracking problems in mechanical systems subject to contact vibrations, this paper considers a regulation problem for discrete-time switched bimodal linear systems where it is desired to achieve output regulation against exogenous input signals featuring known deterministic and unknown random components. A first step in the regulator design involves constructing a set of observer-based parameterized stabilizing controllers that satisfy a sufficient regulation condition for the switched system against the known deterministic disturbance or reference signals. In the second step, an additional performance constraint is added to identify, from among the already constructed regulators, those that provide the best regulation performance against the unknown random disturbances. A corresponding regulator synthesis algorithm is developed based on iteratively solving properly formulated bilinear matrix inequalities. The proposed regulator is successfully evaluated on an experimental setup involving a switched bimodal mechanical system subject to contact vibrations, hence demonstrating the effectiveness of the proposed regulation approach.


Sign in / Sign up

Export Citation Format

Share Document