A Scalable Platform for Low-Latency Real-Time Analytics of Streaming Data

Author(s):  
Paolo Cappellari ◽  
Mark Roantree ◽  
Soon Ae Chun
Keyword(s):  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liang Hu ◽  
Rui Sun ◽  
Feng Wang ◽  
Xiuhong Fei ◽  
Kuo Zhao

With the rapid development of the Internet of Things (IoT), a variety of sensor data are generated around everyone’s life. New research perspective regarding the streaming sensor data processing of the IoT has been raised as a hot research topic that is precisely the theme of this paper. Our study serves to provide guidance regarding the practical aspects of the IoT. Such guidance is rarely mentioned in the current research in which the focus has been more on theory and less on issues describing how to set up a practical system. In our study, we employ numerous open source projects to establish a distributed real time system to process streaming data of the IoT. Two urgent issues have been solved in our study that are (1) multisource heterogeneous sensor data integration and (2) processing streaming sensor data in real time manner with low latency. Furthermore, we set up a real time system to process streaming heterogeneous sensor data from multiple sources with low latency. Our tests are performed using field test data derived from environmental monitoring sensor data collected from indoor environment for system validation. The results show that our proposed system is valid and efficient for multisource heterogeneous sensor data integration and streaming data processing in real time manner.


2019 ◽  
Vol 23 (1) ◽  
pp. 346-357
Author(s):  
Vithya G ◽  
Naren J ◽  
Varun V

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3715
Author(s):  
Ioan Ungurean ◽  
Nicoleta Cristina Gaitan

In the design and development process of fog computing solutions for the Industrial Internet of Things (IIoT), we need to take into consideration the characteristics of the industrial environment that must be met. These include low latency, predictability, response time, and operating with hard real-time compiling. A starting point may be the reference fog architecture released by the OpenFog Consortium (now part of the Industrial Internet Consortium), but it has a high abstraction level and does not define how to integrate the fieldbuses and devices into the fog system. Therefore, the biggest challenges in the design and implementation of fog solutions for IIoT is the diversity of fieldbuses and devices used in the industrial field and ensuring compliance with all constraints in terms of real-time compiling, low latency, and predictability. Thus, this paper proposes a solution for a fog node that addresses these issues and integrates industrial fieldbuses. For practical implementation, there are specialized systems on chips (SoCs) that provides support for real-time communication with the fieldbuses through specialized coprocessors and peripherals. In this paper, we describe the implementation of the fog node on a system based on Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC.


Author(s):  
Olivier Jaubert ◽  
Javier Montalt‐Tordera ◽  
Dan Knight ◽  
Gerry J. Coghlan ◽  
Simon Arridge ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 689
Author(s):  
Tom Springer ◽  
Elia Eiroa-Lledo ◽  
Elizabeth Stevens ◽  
Erik Linstead

As machine learning becomes ubiquitous, the need to deploy models on real-time, embedded systems will become increasingly critical. This is especially true for deep learning solutions, whose large models pose interesting challenges for target architectures at the “edge” that are resource-constrained. The realization of machine learning, and deep learning, is being driven by the availability of specialized hardware, such as system-on-chip solutions, which provide some alleviation of constraints. Equally important, however, are the operating systems that run on this hardware, and specifically the ability to leverage commercial real-time operating systems which, unlike general purpose operating systems such as Linux, can provide the low-latency, deterministic execution required for embedded, and potentially safety-critical, applications at the edge. Despite this, studies considering the integration of real-time operating systems, specialized hardware, and machine learning/deep learning algorithms remain limited. In particular, better mechanisms for real-time scheduling in the context of machine learning applications will prove to be critical as these technologies move to the edge. In order to address some of these challenges, we present a resource management framework designed to provide a dynamic on-device approach to the allocation and scheduling of limited resources in a real-time processing environment. These types of mechanisms are necessary to support the deterministic behavior required by the control components contained in the edge nodes. To validate the effectiveness of our approach, we applied rigorous schedulability analysis to a large set of randomly generated simulated task sets and then verified the most time critical applications, such as the control tasks which maintained low-latency deterministic behavior even during off-nominal conditions. The practicality of our scheduling framework was demonstrated by integrating it into a commercial real-time operating system (VxWorks) then running a typical deep learning image processing application to perform simple object detection. The results indicate that our proposed resource management framework can be leveraged to facilitate integration of machine learning algorithms with real-time operating systems and embedded platforms, including widely-used, industry-standard real-time operating systems.


Algorithms ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 37 ◽  
Author(s):  
Zhigang Hu ◽  
Hui Kang ◽  
Meiguang Zheng

A distributed data stream processing system handles real-time, changeable and sudden streaming data load. Its elastic resource allocation has become a fundamental and challenging problem with a fixed strategy that will result in waste of resources or a reduction in QoS (quality of service). Spark Streaming as an emerging system has been developed to process real time stream data analytics by using micro-batch approach. In this paper, first, we propose an improved SVR (support vector regression) based stream data load prediction scheme. Then, we design a spark-based maximum sustainable throughput of time window (MSTW) performance model to find the optimized number of virtual machines. Finally, we present a resource scaling algorithm TWRES (time window resource elasticity scaling algorithm) with MSTW constraint and streaming data load prediction. The evaluation results show that TWRES could improve resource utilization and mitigate SLA (service level agreement) violation.


Author(s):  
Patrick Dietrich ◽  
Christoph Munkelt ◽  
Kevin Srokos ◽  
Martin Landmann ◽  
Stefan Heist ◽  
...  

2010 ◽  
Vol 12 (S1) ◽  
Author(s):  
Haris Saybasili ◽  
J Andrew Derbyshire ◽  
Peter Kellman ◽  
Mark A Griswold ◽  
Cengizhan Ozturk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document