CHD1 Controls Cell Lineage Specification Through Zygotic Genome Activation

Author(s):  
Shinnosuke Suzuki ◽  
Naojiro Minami
2019 ◽  
Author(s):  
Máté Pálfy ◽  
Gunnar Schulze ◽  
Eivind Valen ◽  
Nadine L. Vastenhouw

ABSTRACTIn many organisms, early embryonic development is driven by maternally provided factors until the controlled onset of transcription during zygotic genome activation. The regulation of chromatin accessibility and its relationship to gene activity during this transition remains poorly understood. Here, we generated chromatin accessibility maps from genome activation until the onset of lineage specification. During this period, chromatin accessibility increases at regulatory elements. This increase is independent of RNA polymerase II-mediated transcription, with the exception of the hyper-transcribed miR-430 locus. Instead, accessibility often precedes the transcription of associated genes. Loss of the maternal transcription factors Pou5f3, Sox19b, and Nanog, which are known to be required for zebrafish genome activation, results in decreased accessibility at regulatory elements. Importantly, the accessibility of regulatory regions, especially when established by Pou5f3, Sox19b and Nanog, is predictive for future transcription. Our results show that the maternally provided transcription factors Pou5f3, Sox19b, and Nanog open up chromatin and prime genes for activity during zygotic genome activation in zebrafish.


Genetics ◽  
2021 ◽  
Author(s):  
Megan M Colonnetta ◽  
Juan E Abrahante ◽  
Paul Schedl ◽  
Daryl M Gohl ◽  
Girish Deshpande

Abstract Embryonic patterning is critically dependent on zygotic genome activation (ZGA). In Drosophila melanogaster embryos, the pioneer factor Zelda directs ZGA, possibly in conjunction with other factors. Here we have explored novel involvement of Chromatin-Linked Adapter for MSL Proteins (CLAMP) during ZGA. CLAMP binds thousands of sites genome-wide throughout early embryogenesis. Interestingly, CLAMP relocates to target promoter sequences across the genome when ZGA is initiated. Although there is a considerable overlap between CLAMP and Zelda binding sites, the proteins display distinct temporal dynamics. To assess whether CLAMP occupancy affects gene expression, we analyzed transcriptomes of embryos zygotically compromised for either clamp or zelda and found that transcript levels of many zygotically-activated genes are similarly affected. Importantly, compromising either clamp or zelda disrupted the expression of critical segmentation and sex determination genes bound by CLAMP (and Zelda). Furthermore, clamp knockdown embryos recapitulate other phenotypes observed in Zelda-depleted embryos, including nuclear division defects, centrosome aberrations, and a disorganized actomyosin network. Based on these data, we propose that CLAMP acts in concert with Zelda to regulate early zygotic transcription.


2017 ◽  
Vol 42 (4) ◽  
pp. 316-332 ◽  
Author(s):  
David Jukam ◽  
S. Ali M. Shariati ◽  
Jan M. Skotheim

2001 ◽  
Vol 61 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Maurizio Zuccotti ◽  
Michele Boiani ◽  
Ruben Ponce ◽  
Stefano Guizzardi ◽  
Renato Scandroglio ◽  
...  

Cell Reports ◽  
2019 ◽  
Vol 27 (10) ◽  
pp. 2962-2977.e5 ◽  
Author(s):  
Kitt D. Paraiso ◽  
Ira L. Blitz ◽  
Masani Coley ◽  
Jessica Cheung ◽  
Norihiro Sudou ◽  
...  

Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Oana Kubinyecz ◽  
Fatima Santos ◽  
Deborah Drage ◽  
Wolf Reik ◽  
Melanie A. Eckersley-Maslin

ABSTRACT Zygotic genome activation (ZGA) represents the initiation of transcription following fertilisation. Despite its importance, we know little of the molecular events that initiate mammalian ZGA in vivo. Recent in vitro studies in mouse embryonic stem cells have revealed developmental pluripotency associated 2 and 4 (Dppa2/4) as key regulators of ZGA-associated transcription. However, their roles in initiating ZGA in vivo remain unexplored. We reveal that Dppa2/4 proteins are present in the nucleus at all stages of preimplantation development and associate with mitotic chromatin. We generated conditional single and double maternal knockout mouse models to deplete maternal stores of Dppa2/4. Importantly, Dppa2/4 maternal knockout mice were fertile when mated with wild-type males. Immunofluorescence and transcriptome analyses of two-cell embryos revealed that, although ZGA took place, there were subtle defects in embryos that lacked maternal Dppa2/4. Strikingly, heterozygous offspring that inherited the null allele maternally had higher preweaning lethality than those that inherited the null allele paternally. Together, our results show that although Dppa2/4 are dispensable for ZGA transcription, maternal stores have an important role in offspring survival, potentially via epigenetic priming of developmental genes.


Sign in / Sign up

Export Citation Format

Share Document