Colorimetric Study on Optical Data from 3D Laser Scanner Prototype for Cultural Heritage Applications

Author(s):  
Sofia Ceccarelli ◽  
Massimiliano Guarneri ◽  
Roberta Fantoni ◽  
Lucina Giacopini ◽  
Alessandro Danielis ◽  
...  
2021 ◽  
Author(s):  
Vincenzo Barrile ◽  
Antonino Fotia

AbstractThere are several studies related to the cultural heritage digitization through HBIM (Heritage Building Information Modelling) techniques. Today, BIM (Building Information Modelling) software cannot represent old buildings with complex prominent and particularly detailed architecture perfectly, and multiple software are combined to obtain the buildings’ representation. In this paper, in order to find an alternative way of replicating the complex details present in antique buildings, a new methodology is presented. The methodology is based on a process of direct insertion of various 3D model parts (.obj), into a BIM environment. These 3D model elements, coming from the points cloud segmentation (from UAV and Laser Scanner), are transformed in intelligent objects and interconnected to form the smart model. The methodology allows to represent detail of the objects that make up an element of cultural heritage, although not standardizable in shape. Although this methodology allows to ensure a perfect reconstruction and digital preservation and to represent the different “defects” that represent and make unique a particular object of cultural heritage, it is not however fast compared with the traditional phases of point cloud tracing and more software are necessary for data processing. The proposed methodology was tested on two specific structures’ reconstruction in Reggio Calabria (South Italy): the Sant’Antonio Abate church and the Vitrioli’s portal.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 98
Author(s):  
Valeria Croce ◽  
Gabriella Caroti ◽  
Andrea Piemonte ◽  
Marco Giorgio Bevilacqua

The digitization of Cultural Heritage paves the way for new approaches to surveying and restitution of historical sites. With a view to the management of integrated programs of documentation and conservation, the research is now focusing on the creation of information systems where to link the digital representation of a building to semantic knowledge. With reference to the emblematic case study of the Calci Charterhouse, also known as Pisa Charterhouse, this contribution illustrates an approach to be followed in the transition from 3D survey information, derived from laser scanner and photogrammetric techniques, to the creation of semantically enriched 3D models. The proposed approach is based on the recognition -segmentation and classification- of elements on the original raw point cloud, and on the manual mapping of NURBS elements on it. For this shape recognition process, reference to architectural treatises and vocabularies of classical architecture is a key step. The created building components are finally imported in a H-BIM environment, where they are enriched with semantic information related to historical knowledge, documentary sources and restoration activities.


Author(s):  
M. Ballarin ◽  
C. Balletti ◽  
P. Vernier

3D printing has seen a recent massive diffusion for several applications, not least the field of Cultural Heritage. Being used for different purposes, such as study, analysis, conservation or access in museum exhibitions, 3D printed replicas need to undergo a process of validation also in terms of metrical precision and accuracy.<br> The Laboratory of Photogrammetry of Iuav University of Venice has started several collaborations with Italian museum institutions firstly for the digital acquisition and then for the physical reproduction of objects of historical and artistic interest. The aim of the research is to analyse the metric characteristics of the printed model in relation to the original data, and to optimize the process that from the survey leads to the physical representation of an object. In fact, this could be acquired through different methodologies that have different precisions (multi-image photogrammetry, TOF laser scanner, triangulation based laser scanner), and it always involves a long processing phase. It should not be forgotten that the digital data have to undergo a series of simplifications, which, on one hand, eliminate the noise introduced by the acquisition process, but on the other one, they can lead to discrepancies between the physical copy and the original geometry. In this paper we will show the results obtained on a small archaeological find that was acquired and reproduced for a museum exhibition intended for blind and partially sighted people.


2016 ◽  
Vol 223 ◽  
pp. 555-560 ◽  
Author(s):  
Vincenzo Barrile ◽  
Antonino Nunnari ◽  
Rosa C. Ponterio

Author(s):  
C. Altuntas

Abstract. This study aims to introduce triangulation and ToF measurement techniques used in three-dimensional modelling of cultural heritages. These measurement techniques are traditional photogrammetry, SfM approach, laser scanning and time-of-flight camera. The computer based approach to photogrammetric measurement that is named SfM creates dense point cloud data in a short time. It is low-cost and very easy to application. However traditional photogrammetry needs a huge effort for creating 3D wire-frame model. On the other hand active measurement techniques such as terrestrial laser scanner and time-of-flight camera have also been used in three-dimensional modelling for more than twenty years. Each one has specific accuracy and measurement effectiveness. The large or small structures have different characters, and require proper measurement configurations. In this study, after these methods are introduced, their superior and weak properties in cultural heritage modelling to make high accuracy, high density and labour and cost effective measurement.


Author(s):  
V. A. Girelli ◽  
L. Borgatti ◽  
M. Dellapasqua ◽  
E. Mandanici ◽  
M. C. Spreafico ◽  
...  

The research activities described in this contribution were carried out at San Leo (Italy). The town is located on the top of a quadrangular rock slab affected by a complex system of fractures and has a wealth of cultural heritage, as evidenced by the UNESCO’s nomination.<br><br> The management of this fragile set requires a comprehensive system of geometrical information to analyse and preserve all the geological and cultural features. In this perspective, the latest Geomatics techniques were used to perform some detailed surveys and to manage the great amount of acquired geometrical knowledge of both natural (the cliff) and historical heritage. All the data were also georeferenced in a unique reference system.<br><br> In particular, high accurate terrestrial laser scanner surveys were performed for the whole cliff, in order to obtain a dense point cloud useful for a large number of geological studies, among others the analyses of the last rockslide by comparing pre- and post-event data.<br><br> Moreover, the geometrical representation of the historical centre was performed using different approaches, in order to generate an accurate DTM and DSM of the site. For these purposes, a large scale numerical map was used, integrating the data with GNSS and laser surveys of the area.<br><br> Finally, many surveys were performed with different approaches on some of the most relevant monuments of the town. In fact, these surveys were performed by terrestrial laser scanner, light structured scanner and photogrammetry, the last mainly applied with the Structure from Motion approach.


Author(s):  
S. D’Amelio ◽  
V. Maggio ◽  
B. Villa

The survey in underwater environment has always presented considerable difficulties both operative and technical and this has sometimes made it difficult to use the techniques of survey commonly used for the documentation of Cultural Heritage in dry environment. The work of study concerns the evaluation in terms of capability and accuracy of the Autodesk123DCatch software for the reconstruction of a three-dimensional model of an object in underwater context. The subjects of the study are models generated from sets of photographs and sets of frames extracted from video sequence. The study is based on comparative method, using a reference model, obtained with laser scanner technique.


Author(s):  
Z. Xu ◽  
T. H. Wu ◽  
Y. Shen ◽  
L. Wu

This paper investigates the synergetic use of unmanned aerial vehicle (UAV) and terrestrial laser scanner (TLS) in 3D reconstruction of cultural heritage objects. Rather than capturing still images, the UAV that equips a consumer digital camera is used to collect dynamic videos to overcome its limited endurance capacity. Then, a set of 3D point-cloud is generated from video image sequences using the automated structure-from-motion (SfM) and patch-based multi-view stereo (PMVS) methods. The TLS is used to collect the information that beyond the reachability of UAV imaging e.g., partial building facades. A coarse to fine method is introduced to integrate the two sets of point clouds UAV image-reconstruction and TLS scanning for completed 3D reconstruction. For increased reliability, a variant of ICP algorithm is introduced using local terrain invariant regions in the combined designation. The experimental study is conducted in the Tulou culture heritage building in Fujian province, China, which is focused on one of the TuLou clusters built several hundred years ago. Results show a digital 3D model of the Tulou cluster with complete coverage and textural information. This paper demonstrates the usability of the proposed method for efficient 3D reconstruction of heritage object based on UAV video and TLS data.


Author(s):  
R. A. Kuçak ◽  
F. Kiliç ◽  
A. Kisa

Historical artifacts living from the past until today exposed to many destructions non-naturally or naturally. For this reason, The protection and documentation studies of Cultural Heritage to inform the next generations are accelerating day by day in the whole world. The preservation of historical artifacts using advanced 3D measurement technologies becomes an efficient tool for mapping solutions. There are many methods for documentation and restoration of historic structures. In addition to traditional methods such as simple hand measurement and tachometry, terrestrial laser scanning is rapidly becoming one of the most commonly used techniques due to its completeness, accuracy and fastness characteristics. This study evaluates terrestrial laser scanning(TLS) technology and photogrammetry for documenting the historical artifacts facade data in 3D Environment. PhotoModeler software developed by Eos System was preferred for Photogrammetric method. Leica HDS 6000 laser scanner developed by Leica Geosystems and Cyclone software which is the laser data evaluation software belonging to the company is preferred for Terrestrial Laser Scanning method. Taking into account the results obtained with this software product is intended to provide a contribution to the studies for the documentation of cultural heritage.


Sign in / Sign up

Export Citation Format

Share Document