scholarly journals 3D MODELING FOR UNDERWATER ARCHAEOLOGICAL DOCUMENTATION: METRIC VERIFICATIONS

Author(s):  
S. D’Amelio ◽  
V. Maggio ◽  
B. Villa

The survey in underwater environment has always presented considerable difficulties both operative and technical and this has sometimes made it difficult to use the techniques of survey commonly used for the documentation of Cultural Heritage in dry environment. The work of study concerns the evaluation in terms of capability and accuracy of the Autodesk123DCatch software for the reconstruction of a three-dimensional model of an object in underwater context. The subjects of the study are models generated from sets of photographs and sets of frames extracted from video sequence. The study is based on comparative method, using a reference model, obtained with laser scanner technique.

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 142
Author(s):  
Giuseppe Schirripa Spagnolo ◽  
Lorenzo Cozzella ◽  
Fabio Leccese

<p class="Abstract">The relief of form is undoubtedly one of the most topical topics in the field of cultural heritage. Physical access to historic and artistic manufactures can be limited by a lot of factors. For example, the access to the collection of the ancient coins is difficult, especially for students. Indeed, for coins digital archive of high-quality three-dimensional model and remote fruition is of great interest. The use of projected fringes for the measurement of surface profile is a well-developed technique. In this paper, we present a surface profile measurement system for small objects of cultural heritage where it is important not only to detect the shape with good accuracy but also to capture and archive the signs due to ageing. The illustrated equipment is simple, reliable, and cheap. Furthermore, some examples of acquisitions are presented to demonstrate the potentiality of the proposed scheme for recovering 2.5D shape of cultural heritage objects.</p>


2019 ◽  
pp. 58-61
Author(s):  
V.I. Gulik ◽  
O.R. Trofymenko ◽  
V.V. Galchenko ◽  
D.V. Budik

The article presents the use of the new Monte Carlo Serpent code for 3D modeling of the WWER-1000 reactor core. Core models for the first loading of RNPP4 and the 28th loading of SUNPP3, the fuel assemblies’ models of different manufacturers were developed and presented. Considerable attention was paid to the detailed modeling of the upper, lower and side reflectors. Validation calculations of the Monte Carlo Serpent code for the WWER-1000 reactor were performed on the basis of the first RNPP4 loading. For the 28th loading of SUNPP3, albedo coefficients for radial and axial reflectors were obtained.


2018 ◽  
Vol 240 ◽  
pp. 05011
Author(s):  
Olha Kletska ◽  
Anatoliy Falendysh ◽  
Arthur Kagramanjan ◽  
Andrey Onishchenko

The article is devoted to the peculiarities of hydraulic calculation of the heat accumulator in the software environment for 3D modeling - SolidWorks. Based on the results of the calculation, the values of the distribution of the velocities of the water flow and the distribution of the static pressure in the given plane of the heat accumulator were obtained, which eventually made it possible to identify the problem areas in the three-dimensional model and obtain the values of the pressure difference.


2015 ◽  
Vol 752-753 ◽  
pp. 1301-1306 ◽  
Author(s):  
Xing Xing Wang ◽  
Jin Dong Wei ◽  
Yi Pei ◽  
Yu Zhu ◽  
Hong Jun Ni

Reverse Engineering (RE) and Rapid Prototyping (RP) were used for manufacturing cream bottle. Points cloud data of cream bottle was accessed by handheld laser scanner firstly. Then, points cloud data was handed by Imageware software and the three-dimensional model was formed by Solidworks software. Finally, the entity model was manufacturing by RP machine. In the research, rapid prototyping was combined with reverse engineering technology, manufacturing cycle was shorten, production requirements, improve efficiency and other advantages were met.


2018 ◽  
Vol 63 ◽  
pp. 00010
Author(s):  
Izabela Piech ◽  
Boguslawa Kwoczynska ◽  
Artur Ciszewski

The aim of the study was to recreate, in the form of a 3D model, the Citadel fort No. 33 “Krakus” in Krakow. The data on the basis of which the three-dimensional model was made were obtained using a Leica ScanStation P40 terrestrial laser scanner, which is owned by the Faculty of Environmental Engineering and Geodesy of the University of Agriculture Hugona Kollataj in Krakow. The scope of field work included performing laser measurements, and then processing the point cloud in the Leica Cyclone 3D program and creating a full architectural model in SketchUp 2016.


2020 ◽  
Vol 177 ◽  
pp. 03015
Author(s):  
Maxim Rakhutin ◽  
Navarrete Simba ◽  
Sergey Khoroshavin

Conducted static research and determined the strength characteristics of the loaded three-dimensional model of the caterpillar track when working at different slope angles. The parameters were calculated in the 3D modeling system “SolidWorks”. As a result of research, it was found that with an increase in the slope angle, the values of the static equivalent stress and strain in the caterpillar track increase in direct proportion, while the value of the safety factor decreases accordingly.


Author(s):  
P. E. Collado-Espejo ◽  
J. García-León ◽  
F. J. Jiménez-González ◽  
C. M. Sánchez-Yepes

Abstract. The former Church of St. Mary, known as the Old Cathedral, in Cartagena (Region of Murcia, Spain), is a construction from the beginning of the 13th century, but it was transformed in the 16th century and rebuilt at the beginning of the 20th century. The bombings occurring during the Spanish Civil War caused the partial collapse of the building and the state of ruin that it currently presents. It is protected as a PCI with the category of monument. A Master Plan is currently being developed that should lead to the recovery of the building. The "Thermal Analysis and Geomatics (TAG)" Research Group of the Polytechnic University of Cartagena has collaborated in the drafting of the Master Plan with a planimetric survey and graphic analysis of the entire building. For this purpose, digital terrestrial photogrammetry techniques and a 3D laser scanner compatible with classical topography have been used, in order to obtain an accurate three-dimensional model. All this graphic information has been contrasted with the historical, typological, material and constructive information currently available about the building, which has facilitated the making of an exhaustive three-dimensional analysis that permits us to know this ancient Cathedral in depth. This paper will describe the work methodology followed, the technical means used and the results achieved, which have been incorporated into the Master Plan that is being prepared. Undoubtedly, the digital analysis has helped to obtain a better general understanding of the building and to be able to propose a correct formal, structural and material recomposition.


2013 ◽  
Vol 288 ◽  
pp. 48-53
Author(s):  
Xue Dong Jing ◽  
Ding Wei ◽  
Siwen Kang

This paper has designed a new type of mechanical structure for a coin-wrapping machine; It’s three-dimensional model has been established by Pro / E 3D modeling software and the kinematic of the Integrated model analysis has been carried out. The simulation results have shown that the coin wrapping process can be simplified and the efficiency can also be improved with the new structure, thereby reducing the costs.


2015 ◽  
Vol 87 (1) ◽  
pp. 63-70 ◽  
Author(s):  
JOANA D.C.G. DE AMORIM ◽  
ISADORA TRAVNIK ◽  
BERNADETE M. DE SOUSA

Lizards' caudal autotomy is a complex and vastly employed antipredator mechanism, with thorough anatomic adaptations involved. Due to its diminished size and intricate structures, vertebral anatomy is hard to be clearly conveyed to students and researchers of other areas. Three-dimensional models are prodigious tools in unveiling anatomical nuances. Some of the techniques used to create them can produce irregular and complicated forms, which despite being very accurate, lack didactical uniformity and simplicity. Since both are considered fundamental characteristics for comprehension, a simplified model could be the key to improve learning. The model here presented depicts the caudal osteology of Tropidurus itambere, and was designed to be concise, in order to be easily assimilated, yet complete, not to compromise the informative aspect. The creation process requires only basic skills in manipulating polygons in 3D modeling softwares, in addition to the appropriate knowledge of the structure to be modeled. As reference for the modeling, we used microscopic observation and a photograph database of the caudal structures. This way, no advanced laboratory equipment was needed and all biological materials were preserved for future research. Therefore, we propose a wider usage of simplified 3D models both in the classroom and as illustrations for scientific publications.


2019 ◽  
Vol 7 ◽  
pp. 107-115
Author(s):  
Alexandr Antonov ◽  
Dmitry Gogolev ◽  
Alexander Chernov

The article presents the results of experimental studies on 3D-modeling of the room, using smartphones and integration with the Unigine Engine virtual reality platform. A flow chart for performing such work has been proposed. Assessment of the accuracy of the obtained 3D model for compliance with the requirements of the unified state real estate market and the proposed further direction of research on this issue.


Sign in / Sign up

Export Citation Format

Share Document