scholarly journals Cochlear Implants: Consequences of Microphone Aging on Speech Recognition

Author(s):  
C. Berger-Vachon ◽  
P. A. Cucis ◽  
E. Truy ◽  
H. Thai Van ◽  
S. Gallego
2008 ◽  
Vol 18 (1) ◽  
pp. 19-24
Author(s):  
Erin C. Schafer

Children who use cochlear implants experience significant difficulty hearing speech in the presence of background noise, such as in the classroom. To address these difficulties, audiologists often recommend frequency-modulated (FM) systems for children with cochlear implants. The purpose of this article is to examine current empirical research in the area of FM systems and cochlear implants. Discussion topics will include selecting the optimal type of FM receiver, benefits of binaural FM-system input, importance of DAI receiver-gain settings, and effects of speech-processor programming on speech recognition. FM systems significantly improve the signal-to-noise ratio at the child's ear through the use of three types of FM receivers: mounted speakers, desktop speakers, or direct-audio input (DAI). This discussion will aid audiologists in making evidence-based recommendations for children using cochlear implants and FM systems.


2009 ◽  
Vol 11 (3) ◽  
pp. 132-151 ◽  
Author(s):  
Tina Ibertsson ◽  
Kristina Hansson ◽  
Lena Asker-Àrnason ◽  
Birgitta SahlÉn

2007 ◽  
Vol 18 (08) ◽  
pp. 700-717 ◽  
Author(s):  
Marios S. Fourakis ◽  
John W. Hawks ◽  
Laura K. Holden ◽  
Margaret W. Skinner ◽  
Timothy A. Holden

The choice of frequency boundaries for the analysis channels of cochlear implants has been shown to impact the speech perception performance of adult recipients (Skinner et al, 1995; Fourakis et al, 2004). While technological limitations heretofore have limited the clinical feasibility of investigating novel frequency assignments, the SPEAR3 research processor affords the opportunity to investigate an unlimited number of possibilities. Here, four different assignments are evaluated using a variety of speech stimuli. All participants accommodated to assignment changes, and no one assignment was significantly preferred. The results suggest that better performance can be achieved using a strategy whereby (1) there are at least 7-8 electrodes allocated below 1000 Hz, (2) the majority of remaining electrodes are allocated between 1100 - 3000 Hz, and (3) the region above 3 kHz is represented by relatively few electrodes (i.e., 1-3). The results suggest that such frequency assignment flexibility should be made clinically available. La escogencia de límites de frecuencia para los canales de análisis de los implantes cocleares se ha visto que impacta el desempeño en la percepción del lenguaje de adultos implantados (Skinner y col, 1995; Fourakis y col, 2004). Mientras que las limitaciones tecnológicas hasta este momento han restringido la factibilidad clínica de investigar nuevas asignaciones de frecuencia, el procesador experimental SPEAR3 ofrece la oportunidad de investigar un número ilimitado de posibilidades. Aquí, se evalúan cuatro asignaciones diferentes utilizando una variedad de estímulos de lenguaje. Todos los participantes se acomodaron a los cambios de asignación y ninguna asignación tuvo una preferencia significativa. Los resultados sugieren que puede obtenerse un desempeño mejor utilizando una estrategia donde (1) existan al menos 7-8 electrodos colocados por debajo de 1000 Hz, (2) la mayoría de los electrodos remanentes sean colocados entre 1100 – 3000 Hz, y (3) la región por encima de 3 kHz esté representada por relativamente pocos electrodos (p.e., 1-3). Los resultados sugieren que tal flexibilidad en la asignación de frecuencias debería estar clínicamente disponible.


1986 ◽  
Vol 112 (10) ◽  
pp. 1054-1059 ◽  
Author(s):  
R. C. Dowell ◽  
D. J. Mecklenburg ◽  
G. M. Clark

2014 ◽  
Vol 57 (3) ◽  
pp. 1108-1126 ◽  
Author(s):  
Ruth M. Reeder ◽  
Jill B. Firszt ◽  
Laura K. Holden ◽  
Michael J. Strube

PurposeThe purpose of this study was to examine the rate of progress in the 2nd implanted ear as it relates to the 1st implanted ear and to bilateral performance in adult sequential cochlear implant recipients. In addition, this study aimed to identify factors that contribute to patient outcomes.MethodThe authors performed a prospective longitudinal study in 21 adults who received bilateral sequential cochlear implants. Testing occurred at 6 intervals: prebilateral through 12 months postbilateral implantation. Measures evaluated speech recognition in quiet and noise, localization, and perceived benefit.ResultsSecond ear performance was similar to 1st ear performance by 6 months postbilateral implantation. Bilateral performance was generally superior to either ear alone; however, participants with shorter 2nd ear length of deafness (<20 years) had more rapid early improvement and better overall outcomes than those with longer 2nd ear length of deafness (>30 years). All participants reported bilateral benefit.ConclusionsAdult cochlear implant recipients demonstrated benefit from 2nd ear implantation for speech recognition, localization, and perceived communication function. Because performance outcomes were related to length of deafness, shorter time between surgeries may be warranted to reduce negative length-of-deafness effects. Future study may clarify the impact of other variables, such as preimplant hearing aid use, particularly for individuals with longer periods of deafness.


1997 ◽  
Vol 101 (6) ◽  
pp. 3766-3782 ◽  
Author(s):  
Margaret W. Skinner ◽  
Laura K. Holden ◽  
Timothy A. Holden ◽  
Marilyn E. Demorest ◽  
Marios S. Fourakis

2002 ◽  
Vol 45 (4) ◽  
pp. 783-788 ◽  
Author(s):  
Michael F. Dorman ◽  
Philipos C. Loizou ◽  
Anthony J. Spahr ◽  
Erin Maloff

Vowels, consonants, and sentences were processed by two cochlear-implant signal-processing strategies—a fixed-channel strategy and a channel-picking strategy—and the resulting signals were presented to listeners with normal hearing for identification. At issue was the number of channels of stimulation needed in each strategy to achieve an equivalent level of speech recognition in quiet and in noise. In quiet, 8 fixed channels allowed a performance maximum for the most difficult stimulus material. A similar level of performance was reached with a 6-of-20 channel-picking strategy. In noise, 10 fixed channels allowed a performance maximum for the most difficult stimulus material. A similar level of performance was reached with a 9-of-20 strategy. Both strategies are capable of providing a very high level of speech recognition. Choosing between the two strategies may, ultimately, depend on issues that are independent of speech recognition—such as ease of device programming.


2009 ◽  
Vol 20 (07) ◽  
pp. 409-421 ◽  
Author(s):  
Jace Wolfe ◽  
Erin C. Schafer ◽  
Benjamin Heldner ◽  
Hans Mülder ◽  
Emily Ward ◽  
...  

Background: Use of personal frequency-modulated (FM) systems significantly improves speech recognition in noise for users of cochlear implants (CIs). Previous studies have shown that the most appropriate gain setting on the FM receiver may vary based on the listening situation and the manufacturer of the CI system. Unlike traditional FM systems with fixed-gain settings, Dynamic FM automatically varies the gain of the FM receiver with changes in the ambient noise level. There are no published reports describing the benefits of Dynamic FM use for CI recipients or how Dynamic FM performance varies as a function of CI manufacturer. Purpose: To evaluate speech recognition of Advanced Bionics Corporation or Cochlear Corporation CI recipients using Dynamic FM vs. a traditional FM system and to examine the effects of Autosensitivity on the FM performance of Cochlear Corporation recipients. Research Design: A two-group repeated-measures design. Participants were assigned to a group according to their type of CI. Study Sample: Twenty-five subjects, ranging in age from 8 to 82 years, met the inclusion criteria for one or more of the experiments. Thirteen subjects used Advanced Bionics Corporation, and 12 used Cochlear Corporation implants. Intervention: Speech recognition was assessed while subjects used traditional, fixed-gain FM systems and Dynamic FM systems. Data Collection and Analysis: In Experiments 1 and 2, speech recognition was evaluated with a traditional, fixed-gain FM system and a Dynamic FM system using the Hearing in Noise Test sentences in quiet and in classroom noise. A repeated-measures analysis of variance (ANOVA) was used to evaluate effects of CI manufacturer (Advanced Bionics and Cochlear Corporation), type of FM system (traditional and dynamic), noise level, and use of Autosensitivity for users of Cochlear Corporation implants. Experiment 3 determined the effects of Autosensitivity on speech recognition of Cochlear Corporation implant recipients when listening through the speech processor microphone with the FM system muted. A repeated-measures ANOVA was used to examine the effects of signal-to-noise ratio and Autosensitivity. Results: In Experiment 1, use of Dynamic FM resulted in better speech recognition in noise for Advanced Bionics recipients relative to traditional FM at noise levels of 65, 70, and 75 dB SPL. Advanced Bionics recipients obtained better speech recognition in noise with FM use when compared to Cochlear Corporation recipients. When Autosensitivity was enabled in Experiment 2, the performance of Cochlear Corporation recipients was equivalent to that of Advanced Bionics recipients, and Dynamic FM was significantly better than traditional FM. Results of Experiment 3 indicate that use of Autosensitivity improves speech recognition in noise of signals directed to the speech processor relative to no Autosensitivity. Conclusions: Dynamic FM should be considered for use with persons with CIs to improve speech recognition in noise. At default CI settings, FM performance is better for Advanced Bionics recipients when compared to Cochlear Corporation recipients, but use of Autosensitivity by Cochlear Corporation users results in equivalent group performance.


Sign in / Sign up

Export Citation Format

Share Document