Fatigue Analysis in a Bellow Expansion Joint Installed a Heat Exchanger

Author(s):  
I. Villagómez ◽  
J. L. González ◽  
J. J. Trujillo ◽  
D. Rivas
2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Kamlesh M. Chikhaliya ◽  
Bhaveshkumar P. Patel

Flanged and flued type expansion joint (thick wall expansion bellow) used as an integral part of many shell and tube heat exchanger where process conditions produce differential expansion between shell and tubes. It provides flexibility for thermal expansion and also functions as a pressure retaining part. Design of expansion joints is usually based on trial and error method in which initial geometry must be assumed, and accordingly maximum stresses and spring rate are be calculated. Inadequate selection of geometry leads to higher tubesheet and bellow thickness, which increases cost of equipment. This paper presents standardization and optimum design approach of flange and flued expansion bellow fulfilling ASME VIII-1 and TEMA standard requirement. Methodology to define expansion bellow geometry is developed, and geometry dimensions are tabulated for expansion bellow diameter from 300 to 2000 mm and thickness from 6 to 30 mm. Each defined geometry is analyzed using finite element method, and maximum von Mises stresses are calculated for bellow axial displacement from 0.5 to 1.5 mm and internal pressure from 0.1 to 6.5 MPa. Spring rate is also calculated for each defined geometry for consideration in tubesheet calculation. Accordingly, optimum design methodology is developed, tested, and compared with existing design. Results depicted that proposed standardization approach and design methodology will optimize expansion bellow and tubesheet thickness and will also save considerable time in finalization of heat exchanger design.


2011 ◽  
Vol 480-481 ◽  
pp. 868-871
Author(s):  
Xiao Hong Li

In this paper, the axial elongation of vertical shell and tube heat exchanger with expansion joint are studied based on thetheories of static mechanics. The axial elongations of heat exchanger’s tube side and shell side that causes by thermal expansion, internal pressure and gravity are considered individually. By comparing and analyzing a typical example, it is shown that thermal expansion is the key reason other than internal pressure and gravity to the axial elongation of tube side and shell side structure. The results show that the axial elongation induced by internal pressure and gravity except thermal expansion is only 5% of total and can be eliminated in engineering practice.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


1900 ◽  
Vol 50 (1280supp) ◽  
pp. 20522-20522
Keyword(s):  

2010 ◽  
Vol 107 (9) ◽  
pp. 369-375 ◽  
Author(s):  
C. Gaier ◽  
B. Unger ◽  
H. Dannbauer

2011 ◽  
Vol 3 (1) ◽  
pp. 152-160
Author(s):  
A. Souf A. Souf ◽  
◽  
K. Talea K. Talea ◽  
A. Bakali A. Bakali ◽  
M. Talea M. Talea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document